Allow the UEFI platform firmware to provide drivers for unrecognised
devices, by exposing our own implementation of EFI_USB_IO_PROTOCOL.
Signed-off-by: Michael Brown <mcb30@ipxe.org>
Allow iPXE to coexist with other USB device drivers, by attaching to
the EFI_USB_IO_PROTOCOL instances provided by the UEFI platform
firmware.
The EFI_USB_IO_PROTOCOL is an unsurprisingly badly designed
abstraction of a USB device. The poor design choices intrinsic in the
UEFI specification prevent efficient operation as a network device,
with the result that devices operated using the EFI_USB_IO_PROTOCOL
operate approximately two orders of magnitude slower than devices
operated using our native EHCI or xHCI host controller drivers.
Since the performance is so abysmally slow, and since the underlying
problems are due to fundamental architectural mistakes in the UEFI
specification, support for the EFI_USB_IO_PROTOCOL host controller
driver is left as disabled by default. Users are advised to use the
native iPXE host controller drivers instead.
Signed-off-by: Michael Brown <mcb30@ipxe.org>
Many UEFI NBPs expect to find an EFI_PXE_BASE_CODE_PROTOCOL installed
in addition to the EFI_SIMPLE_NETWORK_PROTOCOL. Most NBPs use the
EFI_PXE_BASE_CODE_PROTOCOL only to retrieve the cached DHCP packets.
This implementation has been tested with grub.efi, shim.efi,
syslinux.efi, and wdsmgfw.efi. Some methods (such as Discover() and
Arp()) are not used by any known NBP and so have not (yet) been
implemented.
Usage notes for the tested bootstraps are:
- grub.efi uses EFI_PXE_BASE_CODE_PROTOCOL only to retrieve the
cached DHCP packet, and uses no other methods.
- shim.efi uses EFI_PXE_BASE_CODE_PROTOCOL to retrieve the cached
DHCP packet and to retrieve the next NBP via the Mtftp() method.
If shim.efi was downloaded via HTTP (or other non-TFTP protocol)
then shim.efi will blindly call Mtftp() with an HTTP URI as the
filename: this allows the next NBP (e.g. grubx64.efi) to also be
transparently retrieved by HTTP.
shim.efi can also use the EFI_SIMPLE_FILE_SYSTEM_PROTOCOL to
retrieve files previously loaded by "imgfetch" or similar commands
in iPXE. The current implementation of shim.efi will use the
EFI_SIMPLE_FILE_SYSTEM_PROTOCOL only if it does not find an
EFI_PXE_BASE_CODE_PROTOCOL; this patch therefore prevents this
usage of our EFI_SIMPLE_FILE_SYSTEM_PROTOCOL. This logic could be
trivially reversed in shim.efi if needed.
- syslinux.efi uses EFI_PXE_BASE_CODE_PROTOCOL only to retrieve the
cached DHCP packet. Versions 6.03 and earlier have a bug which
may cause syslinux.efi to attach to the wrong NIC if there are
multiple NICs in the system (or if the UEFI firmware supports
IPv6).
- wdsmgfw.efi (ab)uses EFI_PXE_BASE_CODE_PROTOCOL to retrieve the
cached DHCP packets, and to send and retrieve UDP packets via the
UdpWrite() and UdpRead() methods. (This was presumably done in
order to minimise the amount of benefit obtainable by switching to
UEFI, by replicating all of the design mistakes present in the
original PXE specification.)
The EFI_DOWNGRADE_UX configuration option remains available for now,
until this implementation has received more widespread testing.
Signed-off-by: Michael Brown <mcb30@ipxe.org>
Rewrite the HTTP core to allow for the addition of arbitrary content
encoding mechanisms, such as PeerDist and gzip.
The core now exposes http_open() which can be used to create requests
with an explicitly selected HTTP method, an optional requested content
range, and an optional request body. A simple wrapper provides the
preexisting behaviour of creating either a GET request or an
application/x-www-form-urlencoded POST request (if the URI includes
parameters).
The HTTP SAN interface is now implemented using the generic block
device translator. Individual blocks are requested using http_open()
to create a range request.
Server connections are now managed via a connection pool; this allows
for multiple requests to the same server (e.g. for SAN blocks) to be
completely unaware of each other. Repeated HTTPS connections to the
same server can reuse a pooled connection, avoiding the per-connection
overhead of establishing a TLS session (which can take several seconds
if using a client certificate).
Support for HTTP SAN booting and for the Basic and Digest
authentication schemes is now optional and can be controlled via the
SANBOOT_PROTO_HTTP, HTTP_AUTH_BASIC, and HTTP_AUTH_DIGEST build
configuration options in config/general.h.
Signed-off-by: Michael Brown <mcb30@ipxe.org>
UEFI platforms may provide a watchdog timer, which will reboot the
machine if an operating system takes more than five minutes to load.
This can cause long-lived iPXE downloads (or interactive shell
sessions) to unexpectedly reboot.
Fix by resetting the watchdog timer every ten seconds while the iPXE
main processing loop continues to run.
Reported-by: Bradley B Williams <bradleybwilliams@swbell.net>
Reported-by: John Clark <john.r.clark.3@gmail.com>
Reported-by: wdriever@gmail.com
Reported-by: Charlie Beima <cbeima@indiana.edu>
Signed-off-by: Michael Brown <mcb30@ipxe.org>
Replace the AES implementation from AXTLS with a dedicated iPXE
implementation which is slightly smaller and around 1000% faster.
This implementation has been verified using the existing self-tests
based on the NIST AES test vectors.
Signed-off-by: Michael Brown <mcb30@ipxe.org>
Provide a generic inject_fault() function that can be used to inject
random faults with configurable probabilities.
Signed-off-by: Michael Brown <mcb30@ipxe.org>
A fairly common end-user problem is that the default configuration of
a switch may leave the port in a non-forwarding state for a
substantial length of time (tens of seconds) after link up. This can
cause iPXE to time out and give up attempting to boot.
We cannot force the switch to start forwarding packets sooner, since
any attempt to send a Spanning Tree Protocol bridge PDU may cause the
switch to disable our port (if the switch happens to have the Bridge
PDU Guard feature enabled for the port).
For non-ancient versions of the Spanning Tree Protocol, we can detect
whether or not the port is currently forwarding and use this to inform
the network device core that the link is currently blocked.
Signed-off-by: Michael Brown <mcb30@ipxe.org>
Virtual functions use a mailbox to communicate with the physical
function driver: this covers functionality such as obtaining the MAC
address.
Signed-off-by: Michael Brown <mcb30@ipxe.org>
When USB network card drivers are used, the BIOS' legacy USB
capability is necessarily disabled since there is no way to share the
host controller between the BIOS and iPXE. This currently results in
USB keyboards becoming non-functional in USB-enabled builds of iPXE.
Fix by adding basic support for USB keyboards, enabled by default in
iPXE builds which include USB support.
Signed-off-by: Michael Brown <mcb30@ipxe.org>
This driver is functional but any downloads via a TCP-based protocol
tend to perform poorly. The 1Gbps Ethernet line rate is substantially
higher than the 480Mbps (in practice around 280Mbps) provided by USB2,
and the device has only 32kB of internal buffer memory. Our 256kB TCP
receive window therefore rapidly overflows the RX FIFO, leading to
multiple dropped packets (usually within the same TCP window) and
hence a low overall throughput.
Reducing the TCP window size so that the RX FIFO does not overflow
greatly increases throughput, but is not a general-purpose solution.
Further investigation is required to determine how other OSes
(e.g. Linux) cope with this scenario. It is possible that
implementing TCP SACK would provide some benefit.
Signed-off-by: Michael Brown <mcb30@ipxe.org>
These files cannot be automatically relicensed by util/relicense.pl
since they either contain unusual but trivial contributions (such as
the addition of __nonnull function attributes), or contain lines
dating back to the initial git revision (and so require manual
knowledge of the code's origin).
Signed-off-by: Michael Brown <mcb30@ipxe.org>
Some UEFI network drivers provide a software UNDI interface which is
exposed via the Network Interface Identifier Protocol (NII), rather
than providing a Simple Network Protocol (SNP).
The UEFI platform firmware will usually include the SnpDxe driver,
which attaches to NII and provides an SNP interface. The SNP
interface is usually provided on the same handle as the underlying NII
device. This causes problems for our EFI driver model: when
efi_driver_connect() detaches existing drivers from the handle it will
cause the SNP interface to be uninstalled, and so our SNP driver will
not be able to attach to the handle. The platform firmware will
eventually reattach the SnpDxe driver and may attach us to the SNP
handle, but we have no way to prevent other drivers from attaching
first.
Fix by providing a driver which can attach directly to the NII
protocol, using the software UNDI interface to drive the network
device.
Signed-off-by: Michael Brown <mcb30@ipxe.org>
Propagate our modified EFI system table to any images loaded by the
image that we wrap, thereby allowing us to observe boot services calls
made by all subsequent EFI images.
Also show details of intercepted ExitBootServices() calls. When
wrapping is used, exiting boot services will almost certainly fail,
but this at least allows us to see when it happens.
Signed-off-by: Michael Brown <mcb30@ipxe.org>
Add basic support for Xen PV-HVM domains (detected via the Xen
platform PCI device with IDs 5853:0001), including support for
accessing configuration via XenStore and enumerating devices via
XenBus.
Signed-off-by: Michael Brown <mcb30@ipxe.org>
Get the NFS URI manipulation code out of nfs_open.c. The resulting
code is now much more readable.
Signed-off-by: Marin Hannache <git@mareo.fr>
Signed-off-by: Michael Brown <mcb30@ipxe.org>
Add a centralised concept of colours and colour pairs (using the
default colour pairs as configured via config/colour.h). A colour
pair consists of a pair of colour indices.
Add the ability to redefine both a colour pair and an individual
colour index, with minimal overhead if this feature is not required
(e.g. because the relevant shell commands are not present in the
build).
Signed-off-by: Michael Brown <mcb30@ipxe.org>
Add support for the stateful and stateless variants of the DHCPv6
protocol. The resulting settings block is registered as
"net<x>.dhcpv6", and DHCPv6 options can be obtained using
e.g. "${net0.dhcpv6/23:ipv6}" to obtain the IPv6 DNS server address.
IPv6 addresses obtained via stateful DHCPv6 are not yet applied to the
network device.
Signed-off-by: Michael Brown <mcb30@ipxe.org>
Add generic pinger mechanism (analogous to the generic downloader
mechanism) which opens a ping socket, transmits ping requests, and
passes information about ping replies to a callback function.
Signed-off-by: Michael Brown <mcb30@ipxe.org>
Merge common functionality between IPv4 and IPv6 ICMP echo handling,
and add support for transmitting ICMP echo requests and delivering
ICMP echo replies to a (not yet implemented) ping_rx() function.
Signed-off-by: Michael Brown <mcb30@ipxe.org>
Split the protocol-independent portions of arp.c into a separate file
neighbour.c, to allow for sharing of functionality between IPv4+ARP
and IPv6+NDP.
Signed-off-by: Michael Brown <mcb30@ipxe.org>
Allow memory map entries to be read using the syntax
${memmap/<region>.<properties>.<scale>}
where <region> is the index of the memory region, <properties> is a
bitmask where bit 0 represents the start address and bit 1 represents
the length (allowing the end address to be encoded by having both bits
0 and 1 set), and <scale> is the number of bits by which to shift the
result.
This allows for several values of interest to be encoded. For
example:
${memmap/<region>.1.0:hexraw} # 64-bit start address of <region>
${memmap/<region>.2.0:hexraw} # 64-bit length of <region>, in bytes
${memmap/<region>.3.0:hexraw} # 64-bit end address of <region>
${memmap/<region>.2.10:int32} # Length of <region>, in kB
${memmap/<region>.2.20:int32} # Length of <region>, in MB
The numeric encoding is slightly more sophisticated than described
here, allowing a single encoding to cover multiple regions. (See the
source code for details.) The primary use case for this feature is to
provide the total system memory size (in MB) via the "memsize"
predefined setting.
Signed-off-by: Michael Brown <mcb30@ipxe.org>
Signed-off-by: Adrian Jamróz <adrian.jamroz@gmail.com>
Modified-by: Thomas Miletich <thomas.miletich@gmail.com>
Signed-off-by: Thomas Miletich <thomas.miletich@gmail.com>
Signed-off-by: Michael Brown <mcb30@ipxe.org>
Replace the old via-rhine driver with a new version using the iPXE
API.
Includes fixes by Thomas Miletich for:
- MMIO access
- Link detection
- RX completion in RX overflow case
- Reset and EEPROM reloading
- CRC stripping
- Missing cpu_to_le32() calls
- Missing memory barriers
Signed-off-by: Adrian Jamróz <adrian.jamroz@gmail.com>
Modified-by: Thomas Miletich <thomas.miletich@gmail.com>
Tested-by: Thomas Miletich <thomas.miletich@gmail.com>
Tested-by: Robin Smidsrød <robin@smidsrod.no>
Modified-by: Michael Brown <mcb30@ipxe.org>
Tested-by: Michael Brown <mcb30@ipxe.org>
Signed-off-by: Michael Brown <mcb30@ipxe.org>
Allow values to be read from PCI configuration space using the syntax
${pci/<busdevfn>.<offset>.<length>}
where <busdevfn> is the bus:dev.fn address of the PCI device
(expressed as a single integer, as returned by ${net0/busloc}),
<offset> is the offset within PCI configuration space, and <length> is
the length within PCI configuration space.
Values are returned in reverse byte order, since PCI configuration
space is little-endian by definition.
Signed-off-by: Michael Brown <mcb30@ipxe.org>
Exploit the redefinition of iPXE error codes to include a "platform
error code" to allow for meaningful conversion of EFI_STATUS values to
iPXE errors and vice versa.
Signed-off-by: Michael Brown <mcb30@ipxe.org>
iPXE is fundamentally asynchronous in operation: some operations
continue in the background even after the foreground has continued to
a new task. For example, the closing FIN/ACK exchanges of a TCP
connection will take place in the background after an HTTP download
has completed.
Signed-off-by: Michael Brown <mcb30@ipxe.org>
Add support for constructing OCSP queries and parsing OCSP responses.
(There is no support yet for actually issuing an OCSP query via an
HTTP POST.)
Signed-off-by: Michael Brown <mcb30@ipxe.org>
To allow for automatic download of cross-signing certificates and for
OCSP, the validation of certificates must be an asynchronous process.
Create a stub validator which uses a job-control interface to report
the result of certificate validation.
Signed-off-by: Michael Brown <mcb30@ipxe.org>
Tested-by: Thomas Miletich <thomas.miletich@gmail.com>
Debugged-by: Thomas Miletich <thomas.miletich@gmail.com>
Tested-by: Robin Smidsrød <robin@smidsrod.no>
Signed-off-by: Michael Brown <mcb30@ipxe.org>
iPXE provides no support for manually configuring the link speed.
Provide a generic routine which should be able to reset any MII/GMII
PHY and enable autonegotiation.
Prototyped-by: Thomas Miletich <thomas.miletich@gmail.com>
Signed-off-by: Michael Brown <mcb30@ipxe.org>
The Cryptographic Message Syntax (PKCS#7) provides a format for
encapsulating digital signatures of arbitrary binary blobs. A
signature can be generated using
openssl cms -sign -in <file to sign> -binary -noattr \
-signer <signer>.crt -inkey <signer>.key -certfile <CA>.crt \
-outform DER -out <signature>
Signed-off-by: Michael Brown <mcb30@ipxe.org>
Separate out the core HTTP functionality (which is shared by both HTTP
and HTTPS) from the provision of the "http://" URI opener. This
allows for builds that support only "https://" URIs.
Signed-off-by: Michael Brown <mcb30@ipxe.org>
ANS X9.82 specifies that an Approved DRBG must consist of an Approved
algorithm wrapped inside an envelope which handles entropy gathering,
prediction resistance, automatic reseeding and other housekeeping
tasks.
Signed-off-by: Michael Brown <mcb30@ipxe.org>
ANS X9.82 specifies several Approved algorithms for use in a
Deterministic Random Bit Generator (DRBG). One such algorithm is
HMAC_DRBG, which can be implemented using the existing iPXE SHA-1 and
HMAC functionality. This algorithm provides a maximum security
strength of 128 bits.
Signed-off-by: Michael Brown <mcb30@ipxe.org>
For performing installations direct to a SAN target, it can be very
useful to hook a SAN disk and then proceed to perform a filename boot.
For example, the user may wish to hook the (empty) SAN installation
disk and then boot into the OS installer via TFTP. This provides an
alternative mechanism to using "keep-san" and relying on the BIOS to
fall through to boot from the installation media, which is unreliable
on many BIOSes.
When a root-path is specified in addition to a boot filename, attempt
to hook the root-path as a SAN disk before booting from the specified
filename. Since the root-path may be used for non-SAN purposes
(e.g. an NFS root mount point), ignore the root-path if it contains a
URI scheme that we do not support.
Originally-implemented-by: Jarrod Johnson <jarrod.b.johnson@gmail.com>
Signed-off-by: Michael Brown <mcb30@ipxe.org>
Driver for Intel 82576 based virtual functions, based on Intel source
code available at:
http://sourceforge.net/projects/e1000 (igbvf-1.0.7)
Based on initial port from Eric Keller <ekeller@princeton.edu>.
Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
Signed-off-by: Michael Brown <mcb30@ipxe.org>
Command implementations tend to include a substantial amount of common
boilerplate code revolving around the parsing of command-line options
and arguments. This increases the size cost of each command.
Introduce an option-parsing library that abstracts out the common
operations involved in command implementations. This enables the size
of each individual command to be reduced, and also enhances
consistency between commands.
Total size of the library is 704 bytes, to be amortised across all
command implementations.
Signed-off-by: Michael Brown <mcb30@ipxe.org>