Add basic support for running directly on top of SBI, with no UEFI
firmware present. Build as e.g.:
make CROSS=riscv64-linux-gnu- bin-riscv64/ipxe.sbi
The resulting binary can be tested in QEMU using e.g.:
qemu-system-riscv64 -M virt -cpu max -serial stdio \
-kernel bin-riscv64/ipxe.sbi
No drivers or executable binary formats are supported yet, but the
unit test suite may be run successfully.
Signed-off-by: Michael Brown <mcb30@ipxe.org>
The Zkr entropy source extension defines a potentially unprivileged
seed CSR that can be read to obtain 16 bits of entropy input, with a
mandated requirement that 256 entropy input bits read from the seed
CSR will contain at least 128 bits of min-entropy.
Signed-off-by: Michael Brown <mcb30@ipxe.org>
The Zicntr extension defines an unprivileged wall-clock time CSR that
roughly matches the behaviour of an invariant TSC on x86. The nominal
frequency of this timer may be read from the "timebase-frequency"
property of the CPU node in the device tree.
Add a timer source using RDTIME to provide implementations of udelay()
and currticks(), modelled on the existing RDTSC-based timer for x86.
Signed-off-by: Michael Brown <mcb30@ipxe.org>
Allow for the existence of platforms with no PCI bus by including the
PCI settings mechanism only if PCI bus support is included.
Signed-off-by: Michael Brown <mcb30@ipxe.org>
Running with flat physical addressing is a fairly common early boot
environment. Rename UACCESS_EFI to UACCESS_FLAT so that this code may
be reused in non-UEFI boot environments that also use flat physical
addressing.
Signed-off-by: Michael Brown <mcb30@ipxe.org>
Add the ability to issue Supervisor Binary Interface (SBI) calls via
the ECALL instruction, and use the SBI DBCN extension to implement a
debug console.
Signed-off-by: Michael Brown <mcb30@ipxe.org>
Allow scripts to read basic information from USB device descriptors
via the settings mechanism. For example:
echo USB vendor ID: ${usb/${busloc}.8.2}
echo USB device ID: ${usb/${busloc}.10.2}
echo USB manufacturer name: ${usb/${busloc}.14.0}
The general syntax is
usb/<bus:dev>.<offset>.<length>
where bus:dev is the USB bus:device address (as obtained via the
"usbscan" command, or from e.g. ${net0/busloc} for a USB network
device), and <offset> and <length> select the required portion of the
USB device descriptor.
Following the usage of SMBIOS settings tags, a <length> of zero may be
used to indicate that the byte at <offset> contains a USB string
descriptor index, and an <offset> of zero may be used to indicate that
the <length> contains a literal USB string descriptor index.
Since the byte at offset zero can never contain a string index, and a
literal string index can never be zero, the combination of both
<length> and <offset> being zero may be used to indicate that the
entire device descriptor is to be read as a raw hex dump.
Signed-off-by: Michael Brown <mcb30@ipxe.org>
Implement a "usbscan" command as a direct analogy of the existing
"pciscan" command, allowing scripts to iterate over all detected USB
devices.
Signed-off-by: Michael Brown <mcb30@ipxe.org>
Add support for building iPXE as a 64-bit or 32-bit RISC-V binary, for
either UEFI or Linux userspace platforms. For example:
# RISC-V 64-bit UEFI
make CROSS=riscv64-linux-gnu- bin-riscv64-efi/ipxe.efi
# RISC-V 32-bit UEFI
make CROSS=riscv64-linux-gnu- bin-riscv32-efi/ipxe.efi
# RISC-V 64-bit Linux
make CROSS=riscv64-linux-gnu- bin-riscv64-linux/tests.linux
qemu-riscv64 -L /usr/riscv64-linux-gnu/sys-root \
./bin-riscv64-linux/tests.linux
# RISC-V 32-bit Linux
make CROSS=riscv64-linux-gnu- SYSROOT=/usr/riscv32-linux-gnu/sys-root \
bin-riscv32-linux/tests.linux
qemu-riscv32 -L /usr/riscv32-linux-gnu/sys-root \
./bin-riscv32-linux/tests.linux
Signed-off-by: Michael Brown <mcb30@ipxe.org>
Define a cpu_halt() function which is architecture-specific but
platform-independent, and merge the multiple architecture-specific
implementations of the EFI cpu_nap() function into a single central
efi_cpu_nap() that uses cpu_halt() if applicable.
Signed-off-by: Michael Brown <mcb30@ipxe.org>
Add the "imgdecrypt" command that can be used to decrypt a detached
encrypted data image using a cipher key obtained from a separate CMS
envelope image. For example:
# Create non-detached encrypted CMS messages
#
openssl cms -encrypt -binary -aes-256-gcm -recip client.crt \
-in vmlinuz -outform DER -out vmlinuz.cms
openssl cms -encrypt -binary -aes-256-gcm -recip client.crt \
-in initrd.img -outform DER -out initrd.img.cms
# Detach data from envelopes (using iPXE's contrib/crypto/cmsdetach)
#
cmsdetach vmlinuz.cms -d vmlinuz.dat -e vmlinuz.env
cmsdetach initrd.img.cms -d initrd.img.dat -e initrd.img.env
and then within iPXE:
#!ipxe
imgfetch http://192.168.0.1/vmlinuz.dat
imgfetch http://192.168.0.1/initrd.img.dat
imgdecrypt vmlinuz.dat http://192.168.0.1/vmlinuz.env
imgdecrypt initrd.img.dat http://192.168.0.1/initrd.img.env
boot vmlinuz
Signed-off-by: Michael Brown <mcb30@ipxe.org>
Extend the definition of an ASN.1 OID-identified algorithm to include
a potential cipher suite, and add identifiers for AES-CBC and AES-GCM.
Signed-off-by: Michael Brown <mcb30@ipxe.org>
The Google Virtual Ethernet NIC (GVE or gVNIC) is found only in Google
Cloud instances. There is essentially zero documentation available
beyond the mostly uncommented source code in the Linux kernel.
Signed-off-by: Michael Brown <mcb30@ipxe.org>
Add support for presenting a dynamic user interface as an interactive
form, alongside the existing support for presenting a dynamic user
interface as a menu.
An interactive form may be used to allow a user to input (or edit)
values for multiple settings on a single screen, as a user-friendly
alternative to prompting for setting values via the "read" command.
In the present implementation, all input fields must fit on a single
screen (with no scrolling), and the only supported widget type is an
editable text box.
Signed-off-by: Michael Brown <mcb30@ipxe.org>
We currently have an abstract model of a dynamic menu as a list of
items, each of which has a name, a description, and assorted metadata
such as a shortcut key. The "menu" and "item" commands construct
representations in this abstract model, and the "choose" command then
presents the items as a single-choice menu, with the selected item's
name used as the output value.
This same abstraction may be used to model a dynamic form as a list of
editable items, each of which has a corresponding setting name, an
optional description label, and assorted metadata such as a shortcut
key. By defining a "form" command as an alias for the "menu" command,
we could construct and present forms using commands such as:
#!ipxe
form Login to ${url}
item username Username or email address
item --secret password Password
present
or
#!ipxe
form Configure IPv4 networking for ${netX/ifname}
item netX/ip IPv4 address
item netX/netmask Subnet mask
item netX/gateway Gateway address
item netX/dns DNS server address
present
Reusing the same abstract model for both menus and forms allows us to
minimise the increase in code size, since the implementation of the
"form" and "item" commands is essentially zero-cost.
Rename everything within the abstract data model from "menu" to
"dynamic user interface" to reflect this generalisation.
Signed-off-by: Michael Brown <mcb30@ipxe.org>
Intel and AMD distribute microcode updates, which are typically
applied by the BIOS and/or the booted operating system.
BIOS updates can be difficult to obtain and cumbersome to apply, and
are often neglected. Operating system updates may be subject to
strict change control processes, particularly for production
workloads. There is therefore value in being able to update the
microcode at boot time using a freshly downloaded microcode update
file, particularly in scenarios where the physical hardware and the
installed operating system are controlled by different parties (such
as in a public cloud infrastructure).
Add support for parsing Intel and AMD microcode update images, and for
applying the updates to all CPUs in the system.
Signed-off-by: Michael Brown <mcb30@ipxe.org>
Provide an implementation of the iPXE multiprocessor API for BIOS,
based on sending broadcast INIT and SIPI interprocessor interrupts to
start up all application processors.
Signed-off-by: Michael Brown <mcb30@ipxe.org>
Provide an implementation of the iPXE multiprocessor API for EFI,
based on using EFI_MP_SERVICES to start up a wrapper function on all
application processors.
Note that the processor numbers used by EFI_MP_SERVICES are opaque
integers that bear no relation to the underlying CPU identity
(e.g. the APIC ID), and so we must rely on our own (architecture-
specific) implementation to determine the relevant CPU identifiers.
Signed-off-by: Michael Brown <mcb30@ipxe.org>
Define an API for executing very limited functions on application
processors in a multiprocessor system, along with an x86-only
implementation.
The normal iPXE runtime environment is effectively non-existent on
application processors. There is no ability to make firmware calls
(e.g. to write to a console), and there may be no stack space
available.
Signed-off-by: Michael Brown <mcb30@ipxe.org>
Add support for EAP-MSCHAPv2 (note that this is not the same as
PEAP-MSCHAPv2), controllable via the build configuration option
EAP_METHOD_MSCHAPV2 in config/general.h.
Our model for EAP does not encompass mutual authentication: we will
starting sending plaintext packets (e.g. DHCP requests) over the link
even before EAP completes, and our only use for an EAP success is to
mark the link as unblocked.
We therefore ignore the content of the EAP-MSCHAPv2 success request
(containing the MS-CHAPv2 authenticator response) and just send back
an EAP-MSCHAPv2 success response, so that the EAP authenticator will
complete the process and send through the real EAP success packet
(which will, in turn, cause us to unblock the link).
Signed-off-by: Michael Brown <mcb30@ipxe.org>
RFC 3748 states that implementations must support the MD5-Challenge
method. However, some network environments may wish to disable it as
a matter of policy.
Allow support for MD5-Challenge to be controllable via the build
configuration option EAP_METHOD_MD5 in config/general.h.
Signed-off-by: Michael Brown <mcb30@ipxe.org>
Allow the choice of key exchange algorithms to be controlled via build
configuration options in config/crypto.h, as is already done for the
choices of public-key algorithms, cipher algorithms, and digest
algorithms.
Signed-off-by: Michael Brown <mcb30@ipxe.org>
Ensure that .gitignore rules do not cover any files that do exist
within the repository.
Modified-by: Michael Brown <mcb30@ipxe.org>
Signed-off-by: Michael Brown <mcb30@ipxe.org>
EFI variables do not map neatly to the iPXE settings mechanism, since
the EFI variable identifier includes a namespace GUID that cannot
cleanly be supplied as part of a setting name. Creating a new EFI
variable requires the variable's attributes to be specified, which
does not fit within iPXE's settings concept.
However, EFI variable names are generally unique even without the
namespace GUID, and EFI does provide a mechanism to iterate over all
existent variables. We can therefore provide read-only access to EFI
variables by comparing only the names and ignoring the namespace
GUIDs.
Provide an "efi" settings block that implements this mechanism using a
syntax such as:
echo Platform language is ${efi/PlatformLang:string}
show efi/SecureBoot:int8
Settings are returned as raw binary values by default since an EFI
variable may contain boolean flags, integer values, ASCII strings,
UCS-2 strings, EFI device paths, X.509 certificates, or any other
arbitrary blob of data.
Signed-off-by: Michael Brown <mcb30@ipxe.org>
The "shim" command will skip downloading the shim binary (and is
therefore a conditional no-op) if there is already a selected EFI
image that can be executed directly via LoadImage()/StartImage().
This allows the same iPXE script to be used with Secure Boot either
enabled or disabled.
Generalise this further to provide a dummy "shim" command that is an
unconditional no-op on non-EFI platforms. This then allows the same
iPXE script to be used for BIOS, EFI with Secure Boot disabled, or EFI
with Secure Boot enabled.
The same effect could be achieved by using "iseq ${platform} efi"
within the script, but this would complicate end-user documentation.
To minimise the code size impact, the dummy "shim" command is a pure
no-op that does not call parse_options() and so will ignore even
standardised arguments such as "--help".
Signed-off-by: Michael Brown <mcb30@ipxe.org>
Allow a shim to be used to facilitate booting a kernel using a script
such as:
kernel /images/vmlinuz console=ttyS0,115200n8
initrd /images/initrd.img
shim /images/shimx64.efi
boot
Signed-off-by: Michael Brown <mcb30@ipxe.org>
Prepare for the parameter mechanism to be generalised to specifying
request parameters that are passed via mechanisms other than an
application/x-www-form-urlencoded form.
Signed-off-by: Michael Brown <mcb30@ipxe.org>
Commit 7ca801d ("[efi] Use the EFI_RNG_PROTOCOL as an entropy source
if available") added EFI_RNG_PROTOCOL as an alternative entropy source
via an ad-hoc mechanism specific to efi_entropy.c.
Split out EFI_RNG_PROTOCOL to a separate entropy source, and allow the
entropy core to handle the selection of RDRAND, EFI_RNG_PROTOCOL, or
timer ticks as the active source.
The fault detection logic added in commit a87537d ("[efi] Detect and
disable seriously broken EFI_RNG_PROTOCOL implementations") may be
removed completely, since the failure will already be detected by the
generic ANS X9.82-mandated repetition count test and will now be
handled gracefully by the entropy core.
Signed-off-by: Michael Brown <mcb30@ipxe.org>
As noted in commit 3c83843 ("[rng] Check for several functioning RTC
interrupts"), experimentation shows that Hyper-V cannot be trusted to
reliably generate RTC interrupts. (As noted in commit f3ba0fb
("[hyperv] Provide timer based on the 10MHz time reference count
MSR"), Hyper-V appears to suffer from a general problem in reliably
generating any legacy interrupts.) An alternative entropy source is
therefore required for an image that may be used in a Hyper-V Gen1
virtual machine.
The x86 RDRAND instruction provides a suitable alternative entropy
source, but may not be supported by all CPUs. We must therefore allow
for multiple entropy sources to be compiled in, with the single active
entropy source selected only at runtime.
Restructure the internal entropy API to allow a working entropy source
to be detected and chosen at runtime.
Enable the RDRAND entropy source for all x86 builds, since it is
likely to be substantially faster than any other source.
Signed-off-by: Michael Brown <mcb30@ipxe.org>
Add support for recording LLDP packets and exposing TLV values via the
settings mechanism. LLDP settings are encoded as
${netX.lldp/<prefix>.<type>.<index>.<offset>.<length>}
where
<type> is the TLV type
<offset> is the starting offset within the TLV value
<length> is the length (or zero to read the from <offset> to the end)
<prefix>, if it has a non-zero value, is the subtype byte string of
length <offset> to match at the start of the TLV value, up to a
maximum matched length of 4 bytes
<index> is the index of the entry matching <type> and <prefix> to be
accessed, with zero indicating the first matching entry
The <prefix> is designed to accommodate both matching of the OUI
within an organization-specific TLV (e.g. 0x0080c2 for IEEE 802.1
TLVs) and of a subtype byte as found within many TLVs.
This encoding allows most LLDP values to be extracted easily. For
example
System name: ${netX.lldp/5.0.0.0:string}
System description: ${netX.lldp/6.0.0.0:string}
Port description: ${netX.lldp/4.0.0.0:string}
Port interface name: ${netX.lldp/5.2.0.1.0:string}
Chassis MAC address: ${netX.lldp/4.1.0.1.0:hex}
Management IPv4 address: ${netX.lldp/5.1.8.0.2.4:ipv4}
Port VLAN ID: ${netX.lldp/0x0080c2.1.127.0.4.2:int16}
Port VLAN name: ${netX.lldp/0x0080c2.3.127.0.7.0:string}
Maximum frame size: ${netX.lldp/0x00120f.4.127.0.4.2:uint16}
Originally-implemented-by: Marin Hannache <git@mareo.fr>
Signed-off-by: Michael Brown <mcb30@ipxe.org>
Pretty much all physical machines and off-the-shelf virtual machines
will provide a functional PCI BIOS. We therefore default to using
only the PCI BIOS, with no fallback to an alternative mechanism if the
PCI BIOS fails.
AWS EC2 provides the opportunity to experience some exceptions to this
rule. For example, the t3a.nano instances in eu-west-1 have no
functional PCI BIOS at all. As of commit 83516ba ("[cloud] Use
PCIAPI_DIRECT for cloud images") we therefore use direct Type 1
configuration space accesses in the images built and published for use
in the cloud.
Recent experience has discovered yet more variation in AWS EC2
instances. For example, some of the metal instance types have
multiple PCI host bridges and the direct Type 1 accesses therefore
see only a subset of the PCI devices.
Attempt to accommodate future such variations by making the PCI I/O
API selectable at runtime and choosing ECAM (if available), falling
back to the PCI BIOS (if available), then finally falling back to
direct Type 1 accesses.
This is implemented as a dedicated PCIAPI_CLOUD API, rather than by
having the PCI core select a suitable API at runtime (as was done for
timers in commit 302f1ee ("[time] Allow timer to be selected at
runtime"). The common case will remain that only the PCI BIOS API is
required, and we would prefer to retain the optimisations that come
from inlining the configuration space accesses in this common case.
Cloud images are (at present) disk images rather than ROM images, and
so the increased code size required for this design approach in the
PCIAPI_CLOUD case is acceptable.
Signed-off-by: Michael Brown <mcb30@ipxe.org>
AArch64 kernels tend to be distributed as gzip compressed images.
Enable IMAGE_GZIP by default for AArch64 to avoid the need for
uncompressed images to be provided.
Originally-implemented-by: Alessandro Di Stefano <aleskandro@redhat.com>
Signed-off-by: Michael Brown <mcb30@ipxe.org>
SBAT defines an encoding for security generation numbers stored as a
CSV file within a special ".sbat" section in the signed binary. If a
Secure Boot exploit is discovered then the generation number will be
incremented alongside the corresponding fix.
Platforms may then record the minimum generation number required for
any given product. This allows for an efficient revocation mechanism
that consumes minimal flash storage space (in contrast to the DBX
mechanism, which allows for only a single-digit number of revocation
events to ever take place across all possible signed binaries).
Add SBAT metadata to iPXE EFI binaries to support this mechanism.
Signed-off-by: Michael Brown <mcb30@ipxe.org>
The DHCP service in EC2 has been observed to occasionally stop
responding for bursts of several seconds. This can easily result in a
failed boot, since the current cloud boot script will attempt DHCP
only once.
Work around this problem by retrying DHCP in a fairly tight cycle
within the cloud boot script, and falling back to a reboot after
several failed DHCP attempts.
Signed-off-by: Michael Brown <mcb30@ipxe.org>
Support for the zlib and gzip archive image formats is currently
included only if the IMAGE_ARCHIVE_CMD is used to enable the
"imgextract" command.
The ability to transparently execute a single-member archive image
without using the "imgextract" command renders this unintuitive: a
user wanting to gain the ability to boot a gzip-compressed kernel
image would expect to have to enable IMAGE_GZIP rather than
IMAGE_ARCHIVE_CMD.
Reverse the inclusion logic, so that archive image formats must now be
enabled explicitly (via IMAGE_GZIP and/or IMAGE_ZLIB), with the
archive image management commands dragged in as needed if any archive
image formats are enabled. The archive image management commands may
be explicitly disabled via IMAGE_ARCHIVE_CMD if necessary.
This matches the behaviour of IBMGMT_CMD and similar options, where
the relevant commands are included only when something else already
drags in the underlying feature.
Signed-off-by: Michael Brown <mcb30@ipxe.org>
Add the concept of extracting an image from an archive (which could be
a single-file archive such as a gzip-compressed file), along with an
"imgextract" command to expose this functionality to scripts.
Signed-off-by: Michael Brown <mcb30@ipxe.org>
Most EFI firmware builds (including those found on ARM64 instances in
AWS EC2) will already send console output to the serial port.
Do not enable direct serial console output in EFI builds using
CONFIG=cloud.
Signed-off-by: Michael Brown <mcb30@ipxe.org>