mirror of https://github.com/ipxe/ipxe.git
[crypto] Add bigint_montgomery() to perform Montgomery reduction
Montgomery reduction is substantially faster than direct reduction, and is better suited for modular exponentiation operations. Add bigint_montgomery() to perform the Montgomery reduction operation (often referred to as "REDC"), along with some test vectors. Signed-off-by: Michael Brown <mcb30@ipxe.org>pull/1351/head
parent
96f385d7a4
commit
4f7dd7fbba
|
@ -354,6 +354,83 @@ void bigint_mod_invert_raw ( const bigint_element_t *invertend0,
|
|||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Perform Montgomery reduction (REDC) of a big integer product
|
||||
*
|
||||
* @v modulus0 Element 0 of big integer modulus
|
||||
* @v modinv0 Element 0 of the inverse of the modulus modulo 2^k
|
||||
* @v mont0 Element 0 of big integer Montgomery product
|
||||
* @v result0 Element 0 of big integer to hold result
|
||||
* @v size Number of elements in modulus and result
|
||||
*
|
||||
* Note that only the least significant element of the inverse modulo
|
||||
* 2^k is required, and that the Montgomery product will be
|
||||
* overwritten.
|
||||
*/
|
||||
void bigint_montgomery_raw ( const bigint_element_t *modulus0,
|
||||
const bigint_element_t *modinv0,
|
||||
bigint_element_t *mont0,
|
||||
bigint_element_t *result0, unsigned int size ) {
|
||||
const bigint_t ( size ) __attribute__ (( may_alias ))
|
||||
*modulus = ( ( const void * ) modulus0 );
|
||||
const bigint_t ( 1 ) __attribute__ (( may_alias ))
|
||||
*modinv = ( ( const void * ) modinv0 );
|
||||
union {
|
||||
bigint_t ( size * 2 ) full;
|
||||
struct {
|
||||
bigint_t ( size ) low;
|
||||
bigint_t ( size ) high;
|
||||
} __attribute__ (( packed ));
|
||||
} __attribute__ (( may_alias )) *mont = ( ( void * ) mont0 );
|
||||
bigint_t ( size ) __attribute__ (( may_alias ))
|
||||
*result = ( ( void * ) result0 );
|
||||
bigint_element_t negmodinv = -modinv->element[0];
|
||||
bigint_element_t multiple;
|
||||
bigint_element_t carry;
|
||||
unsigned int i;
|
||||
unsigned int j;
|
||||
int overflow;
|
||||
int underflow;
|
||||
|
||||
/* Sanity checks */
|
||||
assert ( bigint_bit_is_set ( modulus, 0 ) );
|
||||
|
||||
/* Perform multiprecision Montgomery reduction */
|
||||
for ( i = 0 ; i < size ; i++ ) {
|
||||
|
||||
/* Determine scalar multiple for this round */
|
||||
multiple = ( mont->low.element[i] * negmodinv );
|
||||
|
||||
/* Multiply value to make it divisible by 2^(width*i) */
|
||||
carry = 0;
|
||||
for ( j = 0 ; j < size ; j++ ) {
|
||||
bigint_multiply_one ( multiple, modulus->element[j],
|
||||
&mont->full.element[ i + j ],
|
||||
&carry );
|
||||
}
|
||||
|
||||
/* Since value is now divisible by 2^(width*i), we
|
||||
* know that the current low element must have been
|
||||
* zeroed. We can store the multiplication carry out
|
||||
* in this element, avoiding the need to immediately
|
||||
* propagate the carry through the remaining elements.
|
||||
*/
|
||||
assert ( mont->low.element[i] == 0 );
|
||||
mont->low.element[i] = carry;
|
||||
}
|
||||
|
||||
/* Add the accumulated carries */
|
||||
overflow = bigint_add ( &mont->low, &mont->high );
|
||||
|
||||
/* Conditionally subtract the modulus once */
|
||||
memcpy ( result, &mont->high, sizeof ( *result ) );
|
||||
underflow = bigint_subtract ( modulus, result );
|
||||
bigint_swap ( result, &mont->high, ( underflow & ~overflow ) );
|
||||
|
||||
/* Sanity check */
|
||||
assert ( ! bigint_is_geq ( result, modulus ) );
|
||||
}
|
||||
|
||||
/**
|
||||
* Perform modular multiplication of big integers
|
||||
*
|
||||
|
|
|
@ -253,6 +253,23 @@ FILE_LICENCE ( GPL2_OR_LATER_OR_UBDL );
|
|||
(inverse)->element, size ); \
|
||||
} while ( 0 )
|
||||
|
||||
/**
|
||||
* Perform Montgomery reduction (REDC) of a big integer product
|
||||
*
|
||||
* @v modulus Big integer modulus
|
||||
* @v modinv Big integer inverse of the modulus modulo 2^k
|
||||
* @v mont Big integer Montgomery product
|
||||
* @v result Big integer to hold result
|
||||
*
|
||||
* Note that the Montgomery product will be overwritten.
|
||||
*/
|
||||
#define bigint_montgomery( modulus, modinv, mont, result ) do { \
|
||||
unsigned int size = bigint_size (modulus); \
|
||||
bigint_montgomery_raw ( (modulus)->element, (modinv)->element, \
|
||||
(mont)->element, (result)->element, \
|
||||
size ); \
|
||||
} while ( 0 )
|
||||
|
||||
/**
|
||||
* Perform modular multiplication of big integers
|
||||
*
|
||||
|
@ -396,6 +413,10 @@ void bigint_reduce_raw ( bigint_element_t *modulus0, bigint_element_t *value0,
|
|||
unsigned int size );
|
||||
void bigint_mod_invert_raw ( const bigint_element_t *invertend0,
|
||||
bigint_element_t *inverse0, unsigned int size );
|
||||
void bigint_montgomery_raw ( const bigint_element_t *modulus0,
|
||||
const bigint_element_t *modinv0,
|
||||
bigint_element_t *mont0,
|
||||
bigint_element_t *result0, unsigned int size );
|
||||
void bigint_mod_multiply_raw ( const bigint_element_t *multiplicand0,
|
||||
const bigint_element_t *multiplier0,
|
||||
const bigint_element_t *modulus0,
|
||||
|
|
|
@ -206,6 +206,23 @@ void bigint_mod_invert_sample ( const bigint_element_t *invertend0,
|
|||
bigint_mod_invert ( invertend, inverse );
|
||||
}
|
||||
|
||||
void bigint_montgomery_sample ( const bigint_element_t *modulus0,
|
||||
const bigint_element_t *modinv0,
|
||||
bigint_element_t *mont0,
|
||||
bigint_element_t *result0,
|
||||
unsigned int size ) {
|
||||
const bigint_t ( size ) __attribute__ (( may_alias ))
|
||||
*modulus = ( ( const void * ) modulus0 );
|
||||
const bigint_t ( 1 ) __attribute__ (( may_alias ))
|
||||
*modinv = ( ( const void * ) modinv0 );
|
||||
bigint_t ( 2 * size ) __attribute__ (( may_alias ))
|
||||
*mont = ( ( void * ) mont0 );
|
||||
bigint_t ( size ) __attribute__ (( may_alias ))
|
||||
*result = ( ( void * ) result0 );
|
||||
|
||||
bigint_montgomery ( modulus, modinv, mont, result );
|
||||
}
|
||||
|
||||
void bigint_mod_multiply_sample ( const bigint_element_t *multiplicand0,
|
||||
const bigint_element_t *multiplier0,
|
||||
const bigint_element_t *modulus0,
|
||||
|
@ -617,6 +634,46 @@ void bigint_mod_exp_sample ( const bigint_element_t *base0,
|
|||
sizeof ( inverse_raw ) ) == 0 ); \
|
||||
} while ( 0 )
|
||||
|
||||
/**
|
||||
* Report result of Montgomery reduction (REDC) test
|
||||
*
|
||||
* @v modulus Big integer modulus
|
||||
* @v mont Big integer Montgomery product
|
||||
* @v expected Big integer expected result
|
||||
*/
|
||||
#define bigint_montgomery_ok( modulus, mont, expected ) do { \
|
||||
static const uint8_t modulus_raw[] = modulus; \
|
||||
static const uint8_t mont_raw[] = mont; \
|
||||
static const uint8_t expected_raw[] = expected; \
|
||||
uint8_t result_raw[ sizeof ( expected_raw ) ]; \
|
||||
unsigned int size = \
|
||||
bigint_required_size ( sizeof ( modulus_raw ) ); \
|
||||
bigint_t ( size ) modulus_temp; \
|
||||
bigint_t ( 1 ) modinv_temp; \
|
||||
bigint_t ( 2 * size ) mont_temp; \
|
||||
bigint_t ( size ) result_temp; \
|
||||
{} /* Fix emacs alignment */ \
|
||||
\
|
||||
assert ( ( sizeof ( modulus_raw ) % \
|
||||
sizeof ( bigint_element_t ) ) == 0 ); \
|
||||
bigint_init ( &modulus_temp, modulus_raw, \
|
||||
sizeof ( modulus_raw ) ); \
|
||||
bigint_init ( &mont_temp, mont_raw, sizeof ( mont_raw ) ); \
|
||||
bigint_mod_invert ( &modulus_temp, &modinv_temp ); \
|
||||
DBG ( "Montgomery:\n" ); \
|
||||
DBG_HDA ( 0, &modulus_temp, sizeof ( modulus_temp ) ); \
|
||||
DBG_HDA ( 0, &modinv_temp, sizeof ( modinv_temp ) ); \
|
||||
DBG_HDA ( 0, &mont_temp, sizeof ( mont_temp ) ); \
|
||||
bigint_montgomery ( &modulus_temp, &modinv_temp, &mont_temp, \
|
||||
&result_temp ); \
|
||||
DBG_HDA ( 0, &result_temp, sizeof ( result_temp ) ); \
|
||||
bigint_done ( &result_temp, result_raw, \
|
||||
sizeof ( result_raw ) ); \
|
||||
\
|
||||
ok ( memcmp ( result_raw, expected_raw, \
|
||||
sizeof ( result_raw ) ) == 0 ); \
|
||||
} while ( 0 )
|
||||
|
||||
/**
|
||||
* Report result of big integer modular multiplication test
|
||||
*
|
||||
|
@ -1858,6 +1915,25 @@ static void bigint_test_exec ( void ) {
|
|||
0x2e, 0xe6, 0x22, 0x07 ),
|
||||
BIGINT ( 0x7b, 0xd1, 0x0f, 0x78, 0x0c, 0x65,
|
||||
0xab, 0xb7 ) );
|
||||
bigint_montgomery_ok ( BIGINT ( 0x74, 0xdf, 0xd1, 0xb8, 0x14, 0xf7,
|
||||
0x05, 0x83 ),
|
||||
BIGINT ( 0x50, 0x6a, 0x38, 0x55, 0x9f, 0xb9,
|
||||
0x9d, 0xba, 0xff, 0x23, 0x86, 0x65,
|
||||
0xe3, 0x2c, 0x3f, 0x17 ),
|
||||
BIGINT ( 0x45, 0x1f, 0x51, 0x44, 0x6f, 0x3c,
|
||||
0x09, 0x6b ) );
|
||||
bigint_montgomery_ok ( BIGINT ( 0x2e, 0x32, 0x90, 0x69, 0x6e, 0xa8,
|
||||
0x47, 0x4c, 0xad, 0xe4, 0xe7, 0x4c,
|
||||
0x03, 0xcb, 0xe6, 0x55 ),
|
||||
BIGINT ( 0x1e, 0x43, 0xf9, 0xc2, 0x61, 0xdd,
|
||||
0xe8, 0xbf, 0xb8, 0xea, 0xe0, 0xdb,
|
||||
0xed, 0x66, 0x80, 0x1e, 0xe8, 0xf8,
|
||||
0xd1, 0x1d, 0xca, 0x8d, 0x45, 0xe9,
|
||||
0xc5, 0xeb, 0x77, 0x21, 0x34, 0xe0,
|
||||
0xf5, 0x5a ),
|
||||
BIGINT ( 0x03, 0x38, 0xfb, 0xb6, 0xf3, 0x80,
|
||||
0x91, 0xb2, 0x68, 0x2f, 0x81, 0x44,
|
||||
0xbf, 0x43, 0x0a, 0x4e ) );
|
||||
bigint_mod_multiply_ok ( BIGINT ( 0x37 ),
|
||||
BIGINT ( 0x67 ),
|
||||
BIGINT ( 0x3f ),
|
||||
|
|
Loading…
Reference in New Issue