[crypto] Add bigint_montgomery() to perform Montgomery reduction

Montgomery reduction is substantially faster than direct reduction,
and is better suited for modular exponentiation operations.

Add bigint_montgomery() to perform the Montgomery reduction operation
(often referred to as "REDC"), along with some test vectors.

Signed-off-by: Michael Brown <mcb30@ipxe.org>
pull/1351/head
Michael Brown 2024-11-27 13:25:18 +00:00
parent 96f385d7a4
commit 4f7dd7fbba
3 changed files with 174 additions and 0 deletions

View File

@ -354,6 +354,83 @@ void bigint_mod_invert_raw ( const bigint_element_t *invertend0,
}
}
/**
* Perform Montgomery reduction (REDC) of a big integer product
*
* @v modulus0 Element 0 of big integer modulus
* @v modinv0 Element 0 of the inverse of the modulus modulo 2^k
* @v mont0 Element 0 of big integer Montgomery product
* @v result0 Element 0 of big integer to hold result
* @v size Number of elements in modulus and result
*
* Note that only the least significant element of the inverse modulo
* 2^k is required, and that the Montgomery product will be
* overwritten.
*/
void bigint_montgomery_raw ( const bigint_element_t *modulus0,
const bigint_element_t *modinv0,
bigint_element_t *mont0,
bigint_element_t *result0, unsigned int size ) {
const bigint_t ( size ) __attribute__ (( may_alias ))
*modulus = ( ( const void * ) modulus0 );
const bigint_t ( 1 ) __attribute__ (( may_alias ))
*modinv = ( ( const void * ) modinv0 );
union {
bigint_t ( size * 2 ) full;
struct {
bigint_t ( size ) low;
bigint_t ( size ) high;
} __attribute__ (( packed ));
} __attribute__ (( may_alias )) *mont = ( ( void * ) mont0 );
bigint_t ( size ) __attribute__ (( may_alias ))
*result = ( ( void * ) result0 );
bigint_element_t negmodinv = -modinv->element[0];
bigint_element_t multiple;
bigint_element_t carry;
unsigned int i;
unsigned int j;
int overflow;
int underflow;
/* Sanity checks */
assert ( bigint_bit_is_set ( modulus, 0 ) );
/* Perform multiprecision Montgomery reduction */
for ( i = 0 ; i < size ; i++ ) {
/* Determine scalar multiple for this round */
multiple = ( mont->low.element[i] * negmodinv );
/* Multiply value to make it divisible by 2^(width*i) */
carry = 0;
for ( j = 0 ; j < size ; j++ ) {
bigint_multiply_one ( multiple, modulus->element[j],
&mont->full.element[ i + j ],
&carry );
}
/* Since value is now divisible by 2^(width*i), we
* know that the current low element must have been
* zeroed. We can store the multiplication carry out
* in this element, avoiding the need to immediately
* propagate the carry through the remaining elements.
*/
assert ( mont->low.element[i] == 0 );
mont->low.element[i] = carry;
}
/* Add the accumulated carries */
overflow = bigint_add ( &mont->low, &mont->high );
/* Conditionally subtract the modulus once */
memcpy ( result, &mont->high, sizeof ( *result ) );
underflow = bigint_subtract ( modulus, result );
bigint_swap ( result, &mont->high, ( underflow & ~overflow ) );
/* Sanity check */
assert ( ! bigint_is_geq ( result, modulus ) );
}
/**
* Perform modular multiplication of big integers
*

View File

@ -253,6 +253,23 @@ FILE_LICENCE ( GPL2_OR_LATER_OR_UBDL );
(inverse)->element, size ); \
} while ( 0 )
/**
* Perform Montgomery reduction (REDC) of a big integer product
*
* @v modulus Big integer modulus
* @v modinv Big integer inverse of the modulus modulo 2^k
* @v mont Big integer Montgomery product
* @v result Big integer to hold result
*
* Note that the Montgomery product will be overwritten.
*/
#define bigint_montgomery( modulus, modinv, mont, result ) do { \
unsigned int size = bigint_size (modulus); \
bigint_montgomery_raw ( (modulus)->element, (modinv)->element, \
(mont)->element, (result)->element, \
size ); \
} while ( 0 )
/**
* Perform modular multiplication of big integers
*
@ -396,6 +413,10 @@ void bigint_reduce_raw ( bigint_element_t *modulus0, bigint_element_t *value0,
unsigned int size );
void bigint_mod_invert_raw ( const bigint_element_t *invertend0,
bigint_element_t *inverse0, unsigned int size );
void bigint_montgomery_raw ( const bigint_element_t *modulus0,
const bigint_element_t *modinv0,
bigint_element_t *mont0,
bigint_element_t *result0, unsigned int size );
void bigint_mod_multiply_raw ( const bigint_element_t *multiplicand0,
const bigint_element_t *multiplier0,
const bigint_element_t *modulus0,

View File

@ -206,6 +206,23 @@ void bigint_mod_invert_sample ( const bigint_element_t *invertend0,
bigint_mod_invert ( invertend, inverse );
}
void bigint_montgomery_sample ( const bigint_element_t *modulus0,
const bigint_element_t *modinv0,
bigint_element_t *mont0,
bigint_element_t *result0,
unsigned int size ) {
const bigint_t ( size ) __attribute__ (( may_alias ))
*modulus = ( ( const void * ) modulus0 );
const bigint_t ( 1 ) __attribute__ (( may_alias ))
*modinv = ( ( const void * ) modinv0 );
bigint_t ( 2 * size ) __attribute__ (( may_alias ))
*mont = ( ( void * ) mont0 );
bigint_t ( size ) __attribute__ (( may_alias ))
*result = ( ( void * ) result0 );
bigint_montgomery ( modulus, modinv, mont, result );
}
void bigint_mod_multiply_sample ( const bigint_element_t *multiplicand0,
const bigint_element_t *multiplier0,
const bigint_element_t *modulus0,
@ -617,6 +634,46 @@ void bigint_mod_exp_sample ( const bigint_element_t *base0,
sizeof ( inverse_raw ) ) == 0 ); \
} while ( 0 )
/**
* Report result of Montgomery reduction (REDC) test
*
* @v modulus Big integer modulus
* @v mont Big integer Montgomery product
* @v expected Big integer expected result
*/
#define bigint_montgomery_ok( modulus, mont, expected ) do { \
static const uint8_t modulus_raw[] = modulus; \
static const uint8_t mont_raw[] = mont; \
static const uint8_t expected_raw[] = expected; \
uint8_t result_raw[ sizeof ( expected_raw ) ]; \
unsigned int size = \
bigint_required_size ( sizeof ( modulus_raw ) ); \
bigint_t ( size ) modulus_temp; \
bigint_t ( 1 ) modinv_temp; \
bigint_t ( 2 * size ) mont_temp; \
bigint_t ( size ) result_temp; \
{} /* Fix emacs alignment */ \
\
assert ( ( sizeof ( modulus_raw ) % \
sizeof ( bigint_element_t ) ) == 0 ); \
bigint_init ( &modulus_temp, modulus_raw, \
sizeof ( modulus_raw ) ); \
bigint_init ( &mont_temp, mont_raw, sizeof ( mont_raw ) ); \
bigint_mod_invert ( &modulus_temp, &modinv_temp ); \
DBG ( "Montgomery:\n" ); \
DBG_HDA ( 0, &modulus_temp, sizeof ( modulus_temp ) ); \
DBG_HDA ( 0, &modinv_temp, sizeof ( modinv_temp ) ); \
DBG_HDA ( 0, &mont_temp, sizeof ( mont_temp ) ); \
bigint_montgomery ( &modulus_temp, &modinv_temp, &mont_temp, \
&result_temp ); \
DBG_HDA ( 0, &result_temp, sizeof ( result_temp ) ); \
bigint_done ( &result_temp, result_raw, \
sizeof ( result_raw ) ); \
\
ok ( memcmp ( result_raw, expected_raw, \
sizeof ( result_raw ) ) == 0 ); \
} while ( 0 )
/**
* Report result of big integer modular multiplication test
*
@ -1858,6 +1915,25 @@ static void bigint_test_exec ( void ) {
0x2e, 0xe6, 0x22, 0x07 ),
BIGINT ( 0x7b, 0xd1, 0x0f, 0x78, 0x0c, 0x65,
0xab, 0xb7 ) );
bigint_montgomery_ok ( BIGINT ( 0x74, 0xdf, 0xd1, 0xb8, 0x14, 0xf7,
0x05, 0x83 ),
BIGINT ( 0x50, 0x6a, 0x38, 0x55, 0x9f, 0xb9,
0x9d, 0xba, 0xff, 0x23, 0x86, 0x65,
0xe3, 0x2c, 0x3f, 0x17 ),
BIGINT ( 0x45, 0x1f, 0x51, 0x44, 0x6f, 0x3c,
0x09, 0x6b ) );
bigint_montgomery_ok ( BIGINT ( 0x2e, 0x32, 0x90, 0x69, 0x6e, 0xa8,
0x47, 0x4c, 0xad, 0xe4, 0xe7, 0x4c,
0x03, 0xcb, 0xe6, 0x55 ),
BIGINT ( 0x1e, 0x43, 0xf9, 0xc2, 0x61, 0xdd,
0xe8, 0xbf, 0xb8, 0xea, 0xe0, 0xdb,
0xed, 0x66, 0x80, 0x1e, 0xe8, 0xf8,
0xd1, 0x1d, 0xca, 0x8d, 0x45, 0xe9,
0xc5, 0xeb, 0x77, 0x21, 0x34, 0xe0,
0xf5, 0x5a ),
BIGINT ( 0x03, 0x38, 0xfb, 0xb6, 0xf3, 0x80,
0x91, 0xb2, 0x68, 0x2f, 0x81, 0x44,
0xbf, 0x43, 0x0a, 0x4e ) );
bigint_mod_multiply_ok ( BIGINT ( 0x37 ),
BIGINT ( 0x67 ),
BIGINT ( 0x3f ),