Sync decompression code from wimlib

pull/1/head
Eric Biggers 2016-07-09 17:31:28 -05:00
parent 3ddd227ee8
commit 5c337bc502
15 changed files with 1848 additions and 968 deletions

View File

@ -7,15 +7,21 @@ plugindir = $(libdir)/ntfs-3g
plugin_LTLIBRARIES = ntfs-plugin-80000017.la
ntfs_plugin_80000017_la_SOURCES = \
src/aligned_malloc.c \
src/common_defs.h \
src/decompress_common.c \
src/decompress_common.h \
src/lzx_common.c \
src/lzx_common.h \
src/lzx_constants.h \
src/lzx_decompress.c \
src/plugin.c \
src/system_compression.c \
src/system_compression.h \
src/xpress_constants.h \
src/xpress_decompress.c
ntfs_plugin_80000017_la_LDFLAGS = -module -shared -avoid-version
ntfs_plugin_80000017_la_CPPFLAGS = -D_FILE_OFFSET_BITS=64
ntfs_plugin_80000017_la_CFLAGS = $(LIBNTFS_3G_CFLAGS)
ntfs_plugin_80000017_la_CFLAGS = $(LIBNTFS_3G_CFLAGS) -std=gnu99
ntfs_plugin_80000017_la_LIBADD = $(LIBNTFS_3G_LIBS)

View File

@ -34,7 +34,22 @@ directory (`$libdir`). An example full path to the installed plugin is
platforms. `make install` will create the plugin directory if it does not
already exist.
# License
# Implementation note
The XPRESS and LZX decompression formats used in system-compressed files are
identical to the formats used in Windows Imaging (WIM) archives. Therefore, for
the system compression plugin I borrowed the XPRESS and LZX decompressors I had
already written for the wimlib project (https://wimlib.net/). I made some
slight modifications for integration purposes. The code in wimlib is currently
licensed LGPLv3+, but I have relicensed the version in this plugin to GPLv2+ for
consistency with NTFS-3G's license. (Public domain portions remain public
domain.)
# Notices
The NTFS-3G system compression plugin was written by Eric Biggers, with
contributions from Jean-Pierre André. You can contact the author at
ebiggers3@gmail.com.
This software may be redistributed and/or modified under the terms of the GNU
General Public License as published by the Free Software Foundation, either

View File

@ -1,4 +1,4 @@
AC_INIT([ntfs-3g-system-compression], [0.1], [ebiggers3@gmail.com])
AC_INIT([ntfs-3g-system-compression], [0.2], [ebiggers3@gmail.com])
AC_CONFIG_SRCDIR([src/plugin.c])
AC_CONFIG_MACRO_DIR([m4])

View File

@ -0,0 +1,34 @@
/*
* aligned_malloc.c - aligned memory allocation
*
* This file provides portable aligned memory allocation functions that only use
* malloc() and free(). This avoids portability problems with posix_memalign(),
* aligned_alloc(), etc.
*/
#include <stdlib.h>
#include "common_defs.h"
void *
aligned_malloc(size_t size, size_t alignment)
{
const uintptr_t mask = alignment - 1;
char *ptr = NULL;
char *raw_ptr;
raw_ptr = malloc(mask + sizeof(size_t) + size);
if (raw_ptr) {
ptr = (char *)raw_ptr + sizeof(size_t);
ptr = (void *)(((uintptr_t)ptr + mask) & ~mask);
*((size_t *)ptr - 1) = ptr - raw_ptr;
}
return ptr;
}
void
aligned_free(void *ptr)
{
if (ptr)
free((char *)ptr - *((size_t *)ptr - 1));
}

290
src/common_defs.h 100644
View File

@ -0,0 +1,290 @@
#ifndef _COMMON_DEFS_H
#define _COMMON_DEFS_H
#include <ntfs-3g/endians.h>
#include <ntfs-3g/types.h>
/* ========================================================================== */
/* Type definitions */
/* ========================================================================== */
/*
* Type of a machine word. 'unsigned long' would be logical, but that is only
* 32 bits on x86_64 Windows. The same applies to 'uint_fast32_t'. So the best
* we can do without a bunch of #ifdefs appears to be 'size_t'.
*/
typedef size_t machine_word_t;
#define WORDBYTES sizeof(machine_word_t)
#define WORDBITS (8 * WORDBYTES)
/* ========================================================================== */
/* Compiler-specific definitions */
/* ========================================================================== */
#ifdef __GNUC__ /* GCC, or GCC-compatible compiler such as clang */
# define forceinline inline __attribute__((always_inline))
# define likely(expr) __builtin_expect(!!(expr), 1)
# define unlikely(expr) __builtin_expect(!!(expr), 0)
# define _aligned_attribute(n) __attribute__((aligned(n)))
# define bsr32(n) (31 - __builtin_clz(n))
# define bsr64(n) (63 - __builtin_clzll(n))
# define bsf32(n) __builtin_ctz(n)
# define bsf64(n) __builtin_ctzll(n)
# ifndef min
# define min(a, b) ({ __typeof__(a) _a = (a); __typeof__(b) _b = (b); \
(_a < _b) ? _a : _b; })
# endif
# ifndef max
# define max(a, b) ({ __typeof__(a) _a = (a); __typeof__(b) _b = (b); \
(_a > _b) ? _a : _b; })
# endif
# define DEFINE_UNALIGNED_TYPE(type) \
struct type##_unaligned { \
type v; \
} __attribute__((packed)); \
\
static inline type \
load_##type##_unaligned(const void *p) \
{ \
return ((const struct type##_unaligned *)p)->v; \
} \
\
static inline void \
store_##type##_unaligned(type val, void *p) \
{ \
((struct type##_unaligned *)p)->v = val; \
}
#endif /* __GNUC__ */
/* Declare that the annotated function should always be inlined. This might be
* desirable in highly tuned code, e.g. compression codecs */
#ifndef forceinline
# define forceinline inline
#endif
/* Hint that the expression is usually true */
#ifndef likely
# define likely(expr) (expr)
#endif
/* Hint that the expression is usually false */
#ifndef unlikely
# define unlikely(expr) (expr)
#endif
/* Declare that the annotated variable, or variables of the annotated type, are
* to be aligned on n-byte boundaries */
#ifndef _aligned_attribute
# define _aligned_attribute(n)
#endif
/* min() and max() macros */
#ifndef min
# define min(a, b) ((a) < (b) ? (a) : (b))
#endif
#ifndef max
# define max(a, b) ((a) > (b) ? (a) : (b))
#endif
/* STATIC_ASSERT() - verify the truth of an expression at compilation time */
#define STATIC_ASSERT(expr) ((void)sizeof(char[1 - 2 * !(expr)]))
/* STATIC_ASSERT_ZERO() - verify the truth of an expression at compilation time
* and also produce a result of value '0' to be used in constant expressions */
#define STATIC_ASSERT_ZERO(expr) ((int)sizeof(char[-!(expr)]))
/* UNALIGNED_ACCESS_IS_FAST should be defined to 1 if unaligned memory accesses
* can be performed efficiently on the target platform. */
#if defined(__x86_64__) || defined(__i386__) || defined(__ARM_FEATURE_UNALIGNED)
# define UNALIGNED_ACCESS_IS_FAST 1
#else
# define UNALIGNED_ACCESS_IS_FAST 0
#endif
/*
* DEFINE_UNALIGNED_TYPE(type) - a macro that, given an integer type 'type',
* defines load_type_unaligned(addr) and store_type_unaligned(v, addr) functions
* which load and store variables of type 'type' from/to unaligned memory
* addresses.
*/
#ifndef DEFINE_UNALIGNED_TYPE
#include <string.h>
/*
* Although memcpy() may seem inefficient, it *usually* gets optimized
* appropriately by modern compilers. It's portable and may be the best we can
* do for a fallback...
*/
#define DEFINE_UNALIGNED_TYPE(type) \
\
static forceinline type \
load_##type##_unaligned(const void *p) \
{ \
type v; \
memcpy(&v, p, sizeof(v)); \
return v; \
} \
\
static forceinline void \
store_##type##_unaligned(type v, void *p) \
{ \
memcpy(p, &v, sizeof(v)); \
}
#endif /* !DEFINE_UNALIGNED_TYPE */
/* ========================================================================== */
/* Unaligned memory accesses */
/* ========================================================================== */
DEFINE_UNALIGNED_TYPE(le16);
DEFINE_UNALIGNED_TYPE(le32);
DEFINE_UNALIGNED_TYPE(machine_word_t);
#define load_word_unaligned load_machine_word_t_unaligned
#define store_word_unaligned store_machine_word_t_unaligned
static inline u16
get_unaligned_le16(const u8 *p)
{
if (UNALIGNED_ACCESS_IS_FAST)
return le16_to_cpu(load_le16_unaligned(p));
else
return ((u16)p[1] << 8) | p[0];
}
static inline u32
get_unaligned_le32(const u8 *p)
{
if (UNALIGNED_ACCESS_IS_FAST)
return le32_to_cpu(load_le32_unaligned(p));
else
return ((u32)p[3] << 24) | ((u32)p[2] << 16) |
((u32)p[1] << 8) | p[0];
}
static inline void
put_unaligned_le16(u16 v, u8 *p)
{
if (UNALIGNED_ACCESS_IS_FAST) {
store_le16_unaligned(cpu_to_le16(v), p);
} else {
p[0] = (u8)(v >> 0);
p[1] = (u8)(v >> 8);
}
}
static inline void
put_unaligned_le32(u32 v, u8 *p)
{
if (UNALIGNED_ACCESS_IS_FAST) {
store_le32_unaligned(cpu_to_le32(v), p);
} else {
p[0] = (u8)(v >> 0);
p[1] = (u8)(v >> 8);
p[2] = (u8)(v >> 16);
p[3] = (u8)(v >> 24);
}
}
/* ========================================================================== */
/* Bit scan functions */
/* ========================================================================== */
/*
* Bit Scan Reverse (BSR) - find the 0-based index (relative to the least
* significant end) of the *most* significant 1 bit in the input value. The
* input value must be nonzero!
*/
#ifndef bsr32
static forceinline unsigned
bsr32(u32 v)
{
unsigned bit = 0;
while ((v >>= 1) != 0)
bit++;
return bit;
}
#endif
#ifndef bsr64
static forceinline unsigned
bsr64(u64 v)
{
unsigned bit = 0;
while ((v >>= 1) != 0)
bit++;
return bit;
}
#endif
static forceinline unsigned
bsrw(machine_word_t v)
{
STATIC_ASSERT(WORDBITS == 32 || WORDBITS == 64);
if (WORDBITS == 32)
return bsr32(v);
else
return bsr64(v);
}
/*
* Bit Scan Forward (BSF) - find the 0-based index (relative to the least
* significant end) of the *least* significant 1 bit in the input value. The
* input value must be nonzero!
*/
#ifndef bsf32
static forceinline unsigned
bsf32(u32 v)
{
unsigned bit;
for (bit = 0; !(v & 1); bit++, v >>= 1)
;
return bit;
}
#endif
#ifndef bsf64
static forceinline unsigned
bsf64(u64 v)
{
unsigned bit;
for (bit = 0; !(v & 1); bit++, v >>= 1)
;
return bit;
}
#endif
static forceinline unsigned
bsfw(machine_word_t v)
{
STATIC_ASSERT(WORDBITS == 32 || WORDBITS == 64);
if (WORDBITS == 32)
return bsf32(v);
else
return bsf64(v);
}
/* Return the log base 2 of 'n', rounded up to the nearest integer. */
static forceinline unsigned
ilog2_ceil(size_t n)
{
if (n <= 1)
return 0;
return 1 + bsrw(n - 1);
}
/* ========================================================================== */
/* Aligned memory allocation */
/* ========================================================================== */
extern void *aligned_malloc(size_t size, size_t alignment);
extern void aligned_free(void *ptr);
#endif /* _COMMON_DEFS_H */

View File

@ -1,325 +1,335 @@
/*
* decompress_common.c - Code shared by the XPRESS and LZX decompressors
* decompress_common.c
*
* Copyright (C) 2015 Eric Biggers
* Code for decompression shared among multiple compression formats.
*
* This program is free software: you can redistribute it and/or modify it under
* the terms of the GNU General Public License as published by the Free Software
* Foundation, either version 2 of the License, or (at your option) any later
* version.
* The following copying information applies to this specific source code file:
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* Written in 2012-2016 by Eric Biggers <ebiggers3@gmail.com>
*
* To the extent possible under law, the author(s) have dedicated all copyright
* and related and neighboring rights to this software to the public domain
* worldwide via the Creative Commons Zero 1.0 Universal Public Domain
* Dedication (the "CC0").
*
* This software is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
* FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
* details.
* FOR A PARTICULAR PURPOSE. See the CC0 for more details.
*
* You should have received a copy of the GNU General Public License along with
* this program. If not, see <http://www.gnu.org/licenses/>.
* You should have received a copy of the CC0 along with this software; if not
* see <http://creativecommons.org/publicdomain/zero/1.0/>.
*/
#ifdef HAVE_CONFIG_H
#include "config.h"
# include "config.h"
#endif
#include <string.h>
#ifdef __SSE2__
# include <emmintrin.h>
#endif
#include "decompress_common.h"
/*
* make_huffman_decode_table() -
*
* Build a decoding table for a canonical prefix code, or "Huffman code".
* Given an alphabet of symbols and the length of each symbol's codeword in a
* canonical prefix code, build a table for quickly decoding symbols that were
* encoded with that code.
*
* This is an internal function, not part of the library API!
* A _prefix code_ is an assignment of bitstrings called _codewords_ to symbols
* such that no whole codeword is a prefix of any other. A prefix code might be
* a _Huffman code_, which means that it is an optimum prefix code for a given
* list of symbol frequencies and was generated by the Huffman algorithm.
* Although the prefix codes processed here will ordinarily be "Huffman codes",
* strictly speaking the decoder cannot know whether a given code was actually
* generated by the Huffman algorithm or not.
*
* This takes as input the length of the codeword for each symbol in the
* alphabet and produces as output a table that can be used for fast
* decoding of prefix-encoded symbols using read_huffsym().
* A prefix code is _canonical_ if and only if a longer codeword never
* lexicographically precedes a shorter codeword, and the lexicographic ordering
* of codewords of equal length is the same as the lexicographic ordering of the
* corresponding symbols. The advantage of using a canonical prefix code is
* that the codewords can be reconstructed from only the symbol => codeword
* length mapping. This eliminates the need to transmit the codewords
* explicitly. Instead, they can be enumerated in lexicographic order after
* sorting the symbols primarily by increasing codeword length and secondarily
* by increasing symbol value.
*
* Strictly speaking, a canonical prefix code might not be a Huffman
* code. But this algorithm will work either way; and in fact, since
* Huffman codes are defined in terms of symbol frequencies, there is no
* way for the decompressor to know whether the code is a true Huffman
* code or not until all symbols have been decoded.
* However, the decoder's real goal is to decode symbols with the code, not just
* generate the list of codewords. Consequently, this function directly builds
* a table for efficiently decoding symbols using the code. The basic idea is
* that given the next 'max_codeword_len' bits of input, the decoder can look up
* the next decoded symbol by indexing a table containing '2^max_codeword_len'
* entries. A codeword with length 'max_codeword_len' will have exactly one
* entry in this table, whereas a codeword shorter than 'max_codeword_len' will
* have multiple entries in this table. Precisely, a codeword of length 'n'
* will have '2^(max_codeword_len - n)' entries. The index of each such entry,
* considered as a bitstring of length 'max_codeword_len', will contain the
* corresponding codeword as a prefix.
*
* Because the prefix code is assumed to be "canonical", it can be
* reconstructed directly from the codeword lengths. A prefix code is
* canonical if and only if a longer codeword never lexicographically
* precedes a shorter codeword, and the lexicographic ordering of
* codewords of the same length is the same as the lexicographic ordering
* of the corresponding symbols. Consequently, we can sort the symbols
* primarily by codeword length and secondarily by symbol value, then
* reconstruct the prefix code by generating codewords lexicographically
* in that order.
* That's the basic idea, but we extend it in two ways:
*
* This function does not, however, generate the prefix code explicitly.
* Instead, it directly builds a table for decoding symbols using the
* code. The basic idea is this: given the next 'max_codeword_len' bits
* in the input, we can look up the decoded symbol by indexing a table
* containing 2**max_codeword_len entries. A codeword with length
* 'max_codeword_len' will have exactly one entry in this table, whereas
* a codeword shorter than 'max_codeword_len' will have multiple entries
* in this table. Precisely, a codeword of length n will be represented
* by 2**(max_codeword_len - n) entries in this table. The 0-based index
* of each such entry will contain the corresponding codeword as a prefix
* when zero-padded on the left to 'max_codeword_len' binary digits.
* - Often the maximum codeword length is too long for it to be efficient to
* build the full decode table whenever a new code is used. Instead, we build
* a "root" table using only '2^table_bits' entries, where 'table_bits <=
* max_codeword_len'. Then, a lookup of 'table_bits' bits produces either a
* symbol directly (for codewords not longer than 'table_bits'), or the index
* of a subtable which must be indexed with additional bits of input to fully
* decode the symbol (for codewords longer than 'table_bits').
*
* That's the basic idea, but we implement two optimizations regarding
* the format of the decode table itself:
* - Whenever the decoder decodes a symbol, it needs to know the codeword length
* so that it can remove the appropriate number of input bits. The obvious
* solution would be to simply retain the codeword lengths array and use the
* decoded symbol as an index into it. However, that would require two array
* accesses when decoding each symbol. Our strategy is to instead store the
* codeword length directly in the decode table entry along with the symbol.
*
* - For many compression formats, the maximum codeword length is too
* long for it to be efficient to build the full decoding table
* whenever a new prefix code is used. Instead, we can build the table
* using only 2**table_bits entries, where 'table_bits' is some number
* less than or equal to 'max_codeword_len'. Then, only codewords of
* length 'table_bits' and shorter can be directly looked up. For
* longer codewords, the direct lookup instead produces the root of a
* binary tree. Using this tree, the decoder can do traditional
* bit-by-bit decoding of the remainder of the codeword. Child nodes
* are allocated in extra entries at the end of the table; leaf nodes
* contain symbols. Note that the long-codeword case is, in general,
* not performance critical, since in Huffman codes the most frequently
* used symbols are assigned the shortest codeword lengths.
*
* - When we decode a symbol using a direct lookup of the table, we still
* need to know its length so that the bitstream can be advanced by the
* appropriate number of bits. The simple solution is to simply retain
* the 'lens' array and use the decoded symbol as an index into it.
* However, this requires two separate array accesses in the fast path.
* The optimization is to store the length directly in the decode
* table. We use the bottom 11 bits for the symbol and the top 5 bits
* for the length. In addition, to combine this optimization with the
* previous one, we introduce a special case where the top 2 bits of
* the length are both set if the entry is actually the root of a
* binary tree.
* See MAKE_DECODE_TABLE_ENTRY() for full details on the format of decode table
* entries, and see read_huffsym() for full details on how symbols are decoded.
*
* @decode_table:
* The array in which to create the decoding table. This must have
* a length of at least ((2**table_bits) + 2 * num_syms) entries.
* The array in which to build the decode table. This must have been
* declared by the DECODE_TABLE() macro. This may alias @lens, since all
* @lens are consumed before the decode table is written to.
*
* @num_syms:
* The number of symbols in the alphabet; also, the length of the
* 'lens' array. Must be less than or equal to 2048.
* The number of symbols in the alphabet.
*
* @table_bits:
* The order of the decode table size, as explained above. Must be
* less than or equal to 13.
* The log base 2 of the number of entries in the root table.
*
* @lens:
* An array of length @num_syms, indexable by symbol, that gives the
* length of the codeword, in bits, for that symbol. The length can
* be 0, which means that the symbol does not have a codeword
* assigned.
* An array of length @num_syms, indexed by symbol, that gives the length
* of the codeword, in bits, for each symbol. The length can be 0, which
* means that the symbol does not have a codeword assigned. In addition,
* @lens may alias @decode_table, as noted above.
*
* @max_codeword_len:
* The longest codeword length allowed in the compression format.
* All entries in 'lens' must be less than or equal to this value.
* This must be less than or equal to 23.
* The maximum codeword length permitted for this code. All entries in
* 'lens' must be less than or equal to this value.
*
* @working_space
* A temporary array of length '2 * (max_codeword_len + 1) +
* num_syms'.
* A temporary array that was declared with DECODE_TABLE_WORKING_SPACE().
*
* Returns 0 on success, or -1 if the lengths do not form a valid prefix
* code.
* Returns 0 on success, or -1 if the lengths do not form a valid prefix code.
*/
int make_huffman_decode_table(u16 decode_table[], const unsigned num_syms,
const unsigned table_bits, const u8 lens[],
const unsigned max_codeword_len,
u16 working_space[])
int
make_huffman_decode_table(u16 decode_table[], unsigned num_syms,
unsigned table_bits, const u8 lens[],
unsigned max_codeword_len, u16 working_space[])
{
const unsigned table_num_entries = 1 << table_bits;
u16 * const len_counts = &working_space[0];
u16 * const offsets = &working_space[1 * (max_codeword_len + 1)];
u16 * const sorted_syms = &working_space[2 * (max_codeword_len + 1)];
int left;
void *decode_table_ptr;
s32 remainder = 1;
void *entry_ptr = decode_table;
unsigned codeword_len = 1;
unsigned sym_idx;
unsigned codeword_len;
unsigned stores_per_loop;
unsigned decode_table_pos;
unsigned len;
unsigned sym;
unsigned codeword;
unsigned subtable_pos;
unsigned subtable_bits;
unsigned subtable_prefix;
/* Count how many symbols have each possible codeword length.
* Note that a length of 0 indicates the corresponding symbol is not
* used in the code and therefore does not have a codeword. */
for (len = 0; len <= max_codeword_len; len++)
/* Count how many codewords have each length, including 0. */
for (unsigned len = 0; len <= max_codeword_len; len++)
len_counts[len] = 0;
for (sym = 0; sym < num_syms; sym++)
for (unsigned sym = 0; sym < num_syms; sym++)
len_counts[lens[sym]]++;
/* We can assume all lengths are <= max_codeword_len, but we
* cannot assume they form a valid prefix code. A codeword of
* length n should require a proportion of the codespace equaling
* (1/2)^n. The code is valid if and only if the codespace is
* exactly filled by the lengths, by this measure. */
left = 1;
for (len = 1; len <= max_codeword_len; len++) {
left <<= 1;
left -= len_counts[len];
if (left < 0) {
/* The lengths overflow the codespace; that is, the code
* is over-subscribed. */
/* It is already guaranteed that all lengths are <= max_codeword_len,
* but it cannot be assumed they form a complete prefix code. A
* codeword of length n should require a proportion of the codespace
* equaling (1/2)^n. The code is complete if and only if, by this
* measure, the codespace is exactly filled by the lengths. */
for (unsigned len = 1; len <= max_codeword_len; len++) {
remainder = (remainder << 1) - len_counts[len];
/* Do the lengths overflow the codespace? */
if (unlikely(remainder < 0))
return -1;
}
}
if (left != 0) {
if (remainder != 0) {
/* The lengths do not fill the codespace; that is, they form an
* incomplete set. */
if (left == (1 << max_codeword_len)) {
/* The code is completely empty. This is arguably
* invalid, but in fact it is valid in LZX and XPRESS,
* so we must allow it. By definition, no symbols can
* be decoded with an empty code. Consequently, we
* technically don't even need to fill in the decode
* table. However, to avoid accessing uninitialized
* memory if the algorithm nevertheless attempts to
* decode symbols using such a code, we zero out the
* decode table. */
memset(decode_table, 0,
table_num_entries * sizeof(decode_table[0]));
return 0;
}
return -1;
* incomplete code. This is permitted only if the code is empty
* (contains no symbols). */
if (unlikely(remainder != 1U << max_codeword_len))
return -1;
/* The code is empty. When processing a well-formed stream, the
* decode table need not be initialized in this case. However,
* we cannot assume the stream is well-formed, so we must
* initialize the decode table anyway. Setting all entries to 0
* makes the decode table always produce symbol '0' without
* consuming any bits, which is good enough. */
memset(decode_table, 0, sizeof(decode_table[0]) << table_bits);
return 0;
}
/* Sort the symbols primarily by length and secondarily by symbol order.
*/
/* Sort the symbols primarily by increasing codeword length and
* secondarily by increasing symbol value. */
/* Initialize 'offsets' so that offsets[len] for 1 <= len <=
* max_codeword_len is the number of codewords shorter than 'len' bits.
*/
offsets[1] = 0;
for (len = 1; len < max_codeword_len; len++)
/* Initialize 'offsets' so that 'offsets[len]' is the number of
* codewords shorter than 'len' bits, including length 0. */
offsets[0] = 0;
for (unsigned len = 0; len < max_codeword_len; len++)
offsets[len + 1] = offsets[len] + len_counts[len];
/* Use the 'offsets' array to sort the symbols. Note that we do not
* include symbols that are not used in the code. Consequently, fewer
* than 'num_syms' entries in 'sorted_syms' may be filled. */
for (sym = 0; sym < num_syms; sym++)
if (lens[sym] != 0)
sorted_syms[offsets[lens[sym]]++] = sym;
/* Use the 'offsets' array to sort the symbols. */
for (unsigned sym = 0; sym < num_syms; sym++)
sorted_syms[offsets[lens[sym]]++] = sym;
/* Fill entries for codewords with length <= table_bits
* --- that is, those short enough for a direct mapping.
/*
* Fill the root table entries for codewords no longer than table_bits.
*
* The table will start with entries for the shortest codeword(s), which
* have the most entries. From there, the number of entries per
* codeword will decrease. */
decode_table_ptr = decode_table;
sym_idx = 0;
codeword_len = 1;
stores_per_loop = (1 << (table_bits - codeword_len));
for (; stores_per_loop != 0; codeword_len++, stores_per_loop >>= 1) {
* will have the most entries. From there, the number of entries per
* codeword will decrease. As an optimization, we may begin filling
* entries with SSE2 vector accesses (8 entries/store), then change to
* word accesses (2 or 4 entries/store), then change to 16-bit accesses
* (1 entry/store).
*/
sym_idx = offsets[0];
#ifdef __SSE2__
/* Fill entries one 128-bit vector (8 entries) at a time. */
for (unsigned stores_per_loop = (1U << (table_bits - codeword_len)) /
(sizeof(__m128i) / sizeof(decode_table[0]));
stores_per_loop != 0; codeword_len++, stores_per_loop >>= 1)
{
unsigned end_sym_idx = sym_idx + len_counts[codeword_len];
for (; sym_idx < end_sym_idx; sym_idx++) {
u16 entry;
u16 *p;
unsigned n;
entry = ((u32)codeword_len << 11) | sorted_syms[sym_idx];
p = (u16*)decode_table_ptr;
n = stores_per_loop;
/* Note: unlike in the "word" version below, the __m128i
* type already has __attribute__((may_alias)), so using
* it to access an array of u16 will not violate strict
* aliasing. */
__m128i v = _mm_set1_epi16(
MAKE_DECODE_TABLE_ENTRY(sorted_syms[sym_idx],
codeword_len));
unsigned n = stores_per_loop;
do {
*p++ = entry;
*(__m128i *)entry_ptr = v;
entry_ptr += sizeof(v);
} while (--n);
}
}
#endif /* __SSE2__ */
decode_table_ptr = p;
#ifdef __GNUC__
/* Fill entries one word (2 or 4 entries) at a time. */
for (unsigned stores_per_loop = (1U << (table_bits - codeword_len)) /
(WORDBYTES / sizeof(decode_table[0]));
stores_per_loop != 0; codeword_len++, stores_per_loop >>= 1)
{
unsigned end_sym_idx = sym_idx + len_counts[codeword_len];
for (; sym_idx < end_sym_idx; sym_idx++) {
/* Accessing the array of u16 as u32 or u64 would
* violate strict aliasing and would require compiling
* the code with -fno-strict-aliasing to guarantee
* correctness. To work around this problem, use the
* gcc 'may_alias' extension. */
typedef machine_word_t
__attribute__((may_alias)) aliased_word_t;
aliased_word_t v = repeat_u16(
MAKE_DECODE_TABLE_ENTRY(sorted_syms[sym_idx],
codeword_len));
unsigned n = stores_per_loop;
do {
*(aliased_word_t *)entry_ptr = v;
entry_ptr += sizeof(v);
} while (--n);
}
}
#endif /* __GNUC__ */
/* Fill entries one at a time. */
for (unsigned stores_per_loop = (1U << (table_bits - codeword_len));
stores_per_loop != 0; codeword_len++, stores_per_loop >>= 1)
{
unsigned end_sym_idx = sym_idx + len_counts[codeword_len];
for (; sym_idx < end_sym_idx; sym_idx++) {
u16 v = MAKE_DECODE_TABLE_ENTRY(sorted_syms[sym_idx],
codeword_len);
unsigned n = stores_per_loop;
do {
*(u16 *)entry_ptr = v;
entry_ptr += sizeof(v);
} while (--n);
}
}
/* If we've filled in the entire table, we are done. Otherwise,
* there are codewords longer than table_bits for which we must
* generate binary trees. */
/* If all symbols were processed, then no subtables are required. */
if (sym_idx == num_syms)
return 0;
decode_table_pos = (u16*)decode_table_ptr - decode_table;
if (decode_table_pos != table_num_entries) {
unsigned j;
unsigned next_free_tree_slot;
unsigned cur_codeword;
/* At least one subtable is required. Process the remaining symbols. */
codeword = ((u16 *)entry_ptr - decode_table) << 1;
subtable_pos = 1U << table_bits;
subtable_bits = table_bits;
subtable_prefix = -1;
do {
while (len_counts[codeword_len] == 0) {
codeword_len++;
codeword <<= 1;
}
/* First, zero out the remaining entries. This is
* necessary so that these entries appear as
* "unallocated" in the next part. Each of these entries
* will eventually be filled with the representation of
* the root node of a binary tree. */
j = decode_table_pos;
do {
decode_table[j] = 0;
} while (++j != table_num_entries);
unsigned prefix = codeword >> (codeword_len - table_bits);
/* We allocate child nodes starting at the end of the
* direct lookup table. Note that there should be
* 2*num_syms extra entries for this purpose, although
* fewer than this may actually be needed. */
next_free_tree_slot = table_num_entries;
/* Start a new subtable if the first 'table_bits' bits of the
* codeword don't match the prefix for the previous subtable, or
* if this will be the first subtable. */
if (prefix != subtable_prefix) {
/* Iterate through each codeword with length greater than
* 'table_bits', primarily in order of codeword length
* and secondarily in order of symbol. */
for (cur_codeword = decode_table_pos << 1;
codeword_len <= max_codeword_len;
codeword_len++, cur_codeword <<= 1)
{
unsigned end_sym_idx = sym_idx + len_counts[codeword_len];
for (; sym_idx < end_sym_idx; sym_idx++, cur_codeword++)
{
/* 'sorted_sym' is the symbol represented by the
* codeword. */
unsigned sorted_sym = sorted_syms[sym_idx];
subtable_prefix = prefix;
unsigned extra_bits = codeword_len - table_bits;
unsigned node_idx = cur_codeword >> extra_bits;
/* Go through each bit of the current codeword
* beyond the prefix of length @table_bits and
* walk the appropriate binary tree, allocating
* any slots that have not yet been allocated.
*
* Note that the 'pointer' entry to the binary
* tree, which is stored in the direct lookup
* portion of the table, is represented
* identically to other internal (non-leaf)
* nodes of the binary tree; it can be thought
* of as simply the root of the tree. The
* representation of these internal nodes is
* simply the index of the left child combined
* with the special bits 0xC000 to distingush
* the entry from direct mapping and leaf node
* entries. */
do {
/* At least one bit remains in the
* codeword, but the current node is an
* unallocated leaf. Change it to an
* internal node. */
if (decode_table[node_idx] == 0) {
decode_table[node_idx] =
next_free_tree_slot | 0xC000;
decode_table[next_free_tree_slot++] = 0;
decode_table[next_free_tree_slot++] = 0;
}
/* Go to the left child if the next bit
* in the codeword is 0; otherwise go to
* the right child. */
node_idx = decode_table[node_idx] & 0x3FFF;
--extra_bits;
node_idx += (cur_codeword >> extra_bits) & 1;
} while (extra_bits != 0);
/* We've traversed the tree using the entire
* codeword, and we're now at the entry where
* the actual symbol will be stored. This is
* distinguished from internal nodes by not
* having its high two bits set. */
decode_table[node_idx] = sorted_sym;
/*
* Calculate the subtable length. If the codeword
* length exceeds 'table_bits' by n, then the subtable
* needs at least 2^n entries. But it may need more; if
* there are fewer than 2^n codewords of length
* 'table_bits + n' remaining, then n will need to be
* incremented to bring in longer codewords until the
* subtable can be filled completely. Note that it
* always will, eventually, be possible to fill the
* subtable, since it was previously verified that the
* code is complete.
*/
subtable_bits = codeword_len - table_bits;
remainder = (s32)1 << subtable_bits;
for (;;) {
remainder -= len_counts[table_bits +
subtable_bits];
if (remainder <= 0)
break;
subtable_bits++;
remainder <<= 1;
}
/* Create the entry that points from the root table to
* the subtable. This entry contains the index of the
* start of the subtable and the number of bits with
* which the subtable is indexed (the log base 2 of the
* number of entries it contains). */
decode_table[subtable_prefix] =
MAKE_DECODE_TABLE_ENTRY(subtable_pos,
subtable_bits);
}
}
/* Fill the subtable entries for this symbol. */
u16 entry = MAKE_DECODE_TABLE_ENTRY(sorted_syms[sym_idx],
codeword_len - table_bits);
unsigned n = 1U << (subtable_bits - (codeword_len -
table_bits));
do {
decode_table[subtable_pos++] = entry;
} while (--n);
len_counts[codeword_len]--;
codeword++;
} while (++sym_idx < num_syms);
return 0;
}

View File

@ -1,99 +1,36 @@
/*
* decompress_common.h - Code shared by the XPRESS and LZX decompressors
* decompress_common.h
*
* Copyright (C) 2015 Eric Biggers
* Header for decompression code shared by multiple compression formats.
*
* This program is free software: you can redistribute it and/or modify it under
* the terms of the GNU General Public License as published by the Free Software
* Foundation, either version 2 of the License, or (at your option) any later
* version.
* The following copying information applies to this specific source code file:
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* Written in 2012-2016 by Eric Biggers <ebiggers3@gmail.com>
*
* To the extent possible under law, the author(s) have dedicated all copyright
* and related and neighboring rights to this software to the public domain
* worldwide via the Creative Commons Zero 1.0 Universal Public Domain
* Dedication (the "CC0").
*
* This software is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
* FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
* details.
* FOR A PARTICULAR PURPOSE. See the CC0 for more details.
*
* You should have received a copy of the GNU General Public License along with
* this program. If not, see <http://www.gnu.org/licenses/>.
* You should have received a copy of the CC0 along with this software; if not
* see <http://creativecommons.org/publicdomain/zero/1.0/>.
*/
#include <stddef.h>
#ifndef _DECOMPRESS_COMMON_H
#define _DECOMPRESS_COMMON_H
#include <errno.h>
#include <string.h>
#include <ntfs-3g/endians.h>
#include <ntfs-3g/types.h>
#include "common_defs.h"
/* "Force inline" macro (not required, but helpful for performance) */
#ifdef __GNUC__
# define forceinline inline __attribute__((always_inline))
#else
# define forceinline inline
#endif
/* Enable whole-word match copying on selected architectures */
#if defined(__i386__) || defined(__x86_64__) || defined(__ARM_FEATURE_UNALIGNED)
# define FAST_UNALIGNED_ACCESS
#endif
/* Size of a machine word */
#define WORDBYTES (sizeof(size_t))
/* Inline functions to read and write unaligned data.
* We use just memcpy() for this. It is standard and modern compilers will
* usually replace it with load/store instructions. */
static forceinline u16 get_unaligned_le16(const u8 *p)
{
le16 v_le;
memcpy(&v_le, p, 2);
return le16_to_cpu(v_le);
}
static forceinline u32 get_unaligned_le32(const u8 *p)
{
le32 v_le;
memcpy(&v_le, p, 4);
return le32_to_cpu(v_le);
}
static forceinline void put_unaligned_le32(u32 v, u8 *p)
{
le32 v_le = cpu_to_le32(v);
memcpy(p, &v_le, 4);
}
/* Load a "word" with platform-dependent size and endianness. */
static forceinline size_t get_unaligned_word(const u8 *p)
{
size_t v;
memcpy(&v, p, WORDBYTES);
return v;
}
/* Store a "word" with platform-dependent size and endianness. */
static forceinline void put_unaligned_word(size_t v, u8 *p)
{
memcpy(p, &v, WORDBYTES);
}
/* Copy a "word" with platform-dependent size. */
static forceinline void copy_unaligned_word(const u8 *src, u8 *dst)
{
put_unaligned_word(get_unaligned_word(src), dst);
}
/* Generate a "word" with platform-dependent size whose bytes all contain the
* value 'b'. */
static forceinline size_t repeat_byte(u8 b)
{
size_t v;
v = b;
v |= v << 8;
v |= v << 16;
v |= v << ((WORDBYTES == 8) ? 32 : 0);
return v;
}
/******************************************************************************/
/* Input bitstream for XPRESS and LZX */
/*----------------------------------------------------------------------------*/
/* Structure that encapsulates a block of in-memory data being interpreted as a
* stream of bits, optionally with interwoven literal bytes. Bits are assumed
@ -106,18 +43,18 @@ struct input_bitstream {
u32 bitbuf;
/* Number of bits currently held in @bitbuf. */
unsigned bitsleft;
u32 bitsleft;
/* Pointer to the next byte to be retrieved from the input buffer. */
const u8 *next;
/* Pointer to just past the end of the input buffer. */
/* Pointer past the end of the input buffer. */
const u8 *end;
};
/* Initialize a bitstream to read from the specified input buffer. */
static forceinline void init_input_bitstream(struct input_bitstream *is,
const void *buffer, u32 size)
static forceinline void
init_input_bitstream(struct input_bitstream *is, const void *buffer, u32 size)
{
is->bitbuf = 0;
is->bitsleft = 0;
@ -125,39 +62,60 @@ static forceinline void init_input_bitstream(struct input_bitstream *is,
is->end = is->next + size;
}
/* Note: for performance reasons, the following methods don't return error codes
* to the caller if the input buffer is overrun. Instead, they just assume that
* all overrun data is zeroes. This has no effect on well-formed compressed
* data. The only disadvantage is that bad compressed data may go undetected,
* but even this is irrelevant if higher level code checksums the uncompressed
* data anyway. */
/* Ensure the bit buffer variable for the bitstream contains at least @num_bits
* bits. Following this, bitstream_peek_bits() and/or bitstream_remove_bits()
* may be called on the bitstream to peek or remove up to @num_bits bits. Note
* that @num_bits must be <= 16. */
static forceinline void bitstream_ensure_bits(struct input_bitstream *is,
unsigned num_bits)
* may be called on the bitstream to peek or remove up to @num_bits bits. */
static forceinline void
bitstream_ensure_bits(struct input_bitstream *is, const unsigned num_bits)
{
if (is->bitsleft < num_bits) {
if (is->end - is->next >= 2) {
is->bitbuf |= (u32)get_unaligned_le16(is->next)
<< (16 - is->bitsleft);
is->next += 2;
}
is->bitsleft += 16;
/* This currently works for at most 17 bits. */
if (is->bitsleft >= num_bits)
return;
if (unlikely(is->end - is->next < 2))
goto overflow;
is->bitbuf |= (u32)get_unaligned_le16(is->next) << (16 - is->bitsleft);
is->next += 2;
is->bitsleft += 16;
if (unlikely(num_bits == 17 && is->bitsleft == 16)) {
if (unlikely(is->end - is->next < 2))
goto overflow;
is->bitbuf |= (u32)get_unaligned_le16(is->next);
is->next += 2;
is->bitsleft = 32;
}
return;
overflow:
is->bitsleft = 32;
}
/* Return the next @num_bits bits from the bitstream, without removing them.
* There must be at least @num_bits remaining in the buffer variable, from a
* previous call to bitstream_ensure_bits(). */
static forceinline u32 bitstream_peek_bits(const struct input_bitstream *is,
unsigned num_bits)
static forceinline u32
bitstream_peek_bits(const struct input_bitstream *is, const unsigned num_bits)
{
if (num_bits == 0)
return 0;
return is->bitbuf >> (32 - num_bits);
return (is->bitbuf >> 1) >> (sizeof(is->bitbuf) * 8 - num_bits - 1);
}
/* Remove @num_bits from the bitstream. There must be at least @num_bits
* remaining in the buffer variable, from a previous call to
* bitstream_ensure_bits(). */
static forceinline void bitstream_remove_bits(struct input_bitstream *is,
unsigned num_bits)
static forceinline void
bitstream_remove_bits(struct input_bitstream *is, unsigned num_bits)
{
is->bitbuf <<= num_bits;
is->bitsleft -= num_bits;
@ -166,8 +124,8 @@ static forceinline void bitstream_remove_bits(struct input_bitstream *is,
/* Remove and return @num_bits bits from the bitstream. There must be at least
* @num_bits remaining in the buffer variable, from a previous call to
* bitstream_ensure_bits(). */
static forceinline u32 bitstream_pop_bits(struct input_bitstream *is,
unsigned num_bits)
static forceinline u32
bitstream_pop_bits(struct input_bitstream *is, unsigned num_bits)
{
u32 bits = bitstream_peek_bits(is, num_bits);
bitstream_remove_bits(is, num_bits);
@ -175,27 +133,29 @@ static forceinline u32 bitstream_pop_bits(struct input_bitstream *is,
}
/* Read and return the next @num_bits bits from the bitstream. */
static forceinline u32 bitstream_read_bits(struct input_bitstream *is,
unsigned num_bits)
static forceinline u32
bitstream_read_bits(struct input_bitstream *is, unsigned num_bits)
{
bitstream_ensure_bits(is, num_bits);
return bitstream_pop_bits(is, num_bits);
}
/* Read and return the next literal byte embedded in the bitstream. */
static forceinline u8 bitstream_read_byte(struct input_bitstream *is)
static forceinline u8
bitstream_read_byte(struct input_bitstream *is)
{
if (is->end == is->next)
if (unlikely(is->end == is->next))
return 0;
return *is->next++;
}
/* Read and return the next 16-bit integer embedded in the bitstream. */
static forceinline u16 bitstream_read_u16(struct input_bitstream *is)
static forceinline u16
bitstream_read_u16(struct input_bitstream *is)
{
u16 v;
if (is->end - is->next < 2)
if (unlikely(is->end - is->next < 2))
return 0;
v = get_unaligned_le16(is->next);
is->next += 2;
@ -203,11 +163,12 @@ static forceinline u16 bitstream_read_u16(struct input_bitstream *is)
}
/* Read and return the next 32-bit integer embedded in the bitstream. */
static forceinline u32 bitstream_read_u32(struct input_bitstream *is)
static forceinline u32
bitstream_read_u32(struct input_bitstream *is)
{
u32 v;
if (is->end - is->next < 4)
if (unlikely(is->end - is->next < 4))
return 0;
v = get_unaligned_le32(is->next);
is->next += 4;
@ -215,161 +176,370 @@ static forceinline u32 bitstream_read_u32(struct input_bitstream *is)
}
/* Read into @dst_buffer an array of literal bytes embedded in the bitstream.
* Return either a pointer to the byte past the last written, or NULL if the
* read overflows the input buffer. */
static forceinline void *bitstream_read_bytes(struct input_bitstream *is,
void *dst_buffer, size_t count)
* Return 0 if there were enough bytes remaining in the input, otherwise -1. */
static forceinline int
bitstream_read_bytes(struct input_bitstream *is, void *dst_buffer, size_t count)
{
if ((size_t)(is->end - is->next) < count)
return NULL;
if (unlikely(is->end - is->next < count))
return -1;
memcpy(dst_buffer, is->next, count);
is->next += count;
return (u8 *)dst_buffer + count;
return 0;
}
/* Align the input bitstream on a coding-unit boundary. */
static forceinline void bitstream_align(struct input_bitstream *is)
static forceinline void
bitstream_align(struct input_bitstream *is)
{
is->bitsleft = 0;
is->bitbuf = 0;
}
extern int make_huffman_decode_table(u16 decode_table[], const unsigned num_syms,
const unsigned num_bits, const u8 lens[],
const unsigned max_codeword_len,
u16 working_space[]);
/******************************************************************************/
/* Huffman decoding */
/*----------------------------------------------------------------------------*/
/*
* Required alignment for the Huffman decode tables. We require this alignment
* so that we can fill the entries with vector or word instructions and not have
* to deal with misaligned buffers.
*/
#define DECODE_TABLE_ALIGNMENT 16
/* Reads and returns the next Huffman-encoded symbol from a bitstream. If the
* input data is exhausted, the Huffman symbol is decoded as if the missing bits
* are all zeroes. */
static forceinline unsigned read_huffsym(struct input_bitstream *istream,
const u16 decode_table[],
unsigned table_bits,
unsigned max_codeword_len)
/*
* Each decode table entry is 16 bits divided into two fields: 'symbol' (high 12
* bits) and 'length' (low 4 bits). The precise meaning of these fields depends
* on the type of entry:
*
* Root table entries which are *not* subtable pointers:
* symbol: symbol to decode
* length: codeword length in bits
*
* Root table entries which are subtable pointers:
* symbol: index of start of subtable
* length: number of bits with which the subtable is indexed
*
* Subtable entries:
* symbol: symbol to decode
* length: codeword length in bits, minus the number of bits with which the
* root table is indexed
*/
#define DECODE_TABLE_SYMBOL_SHIFT 4
#define DECODE_TABLE_MAX_SYMBOL ((1 << (16 - DECODE_TABLE_SYMBOL_SHIFT)) - 1)
#define DECODE_TABLE_MAX_LENGTH ((1 << DECODE_TABLE_SYMBOL_SHIFT) - 1)
#define DECODE_TABLE_LENGTH_MASK DECODE_TABLE_MAX_LENGTH
#define MAKE_DECODE_TABLE_ENTRY(symbol, length) \
(((symbol) << DECODE_TABLE_SYMBOL_SHIFT) | (length))
/*
* Read and return the next Huffman-encoded symbol from the given bitstream
* using the given decode table.
*
* If the input data is exhausted, then the Huffman symbol will be decoded as if
* the missing bits were all zeroes.
*
* XXX: This is mostly duplicated in lzms_decode_huffman_symbol() in
* lzms_decompress.c; keep them in sync!
*/
static forceinline unsigned
read_huffsym(struct input_bitstream *is, const u16 decode_table[],
unsigned table_bits, unsigned max_codeword_len)
{
unsigned entry;
unsigned key_bits;
unsigned symbol;
unsigned length;
bitstream_ensure_bits(istream, max_codeword_len);
/* Preload the bitbuffer with 'max_codeword_len' bits so that we're
* guaranteed to be able to fully decode a codeword. */
bitstream_ensure_bits(is, max_codeword_len);
/* Index the decode table by the next table_bits bits of the input. */
key_bits = bitstream_peek_bits(istream, table_bits);
entry = decode_table[key_bits];
if (entry < 0xC000) {
/* Fast case: The decode table directly provided the
* symbol and codeword length. The low 11 bits are the
* symbol, and the high 5 bits are the codeword length. */
bitstream_remove_bits(istream, entry >> 11);
return entry & 0x7FF;
} else {
/* Slow case: The codeword for the symbol is longer than
* table_bits, so the symbol does not have an entry
* directly in the first (1 << table_bits) entries of the
* decode table. Traverse the appropriate binary tree
* bit-by-bit to decode the symbol. */
bitstream_remove_bits(istream, table_bits);
do {
key_bits = (entry & 0x3FFF) + bitstream_pop_bits(istream, 1);
} while ((entry = decode_table[key_bits]) >= 0xC000);
return entry;
/* Index the root table by the next 'table_bits' bits of input. */
entry = decode_table[bitstream_peek_bits(is, table_bits)];
/* Extract the "symbol" and "length" from the entry. */
symbol = entry >> DECODE_TABLE_SYMBOL_SHIFT;
length = entry & DECODE_TABLE_LENGTH_MASK;
/* If the root table is indexed by the full 'max_codeword_len' bits,
* then there cannot be any subtables, and this will be known at compile
* time. Otherwise, we must check whether the decoded symbol is really
* a subtable pointer. If so, we must discard the bits with which the
* root table was indexed, then index the subtable by the next 'length'
* bits of input to get the real entry. */
if (max_codeword_len > table_bits &&
entry >= (1U << (table_bits + DECODE_TABLE_SYMBOL_SHIFT)))
{
/* Subtable required */
bitstream_remove_bits(is, table_bits);
entry = decode_table[symbol + bitstream_peek_bits(is, length)];
symbol = entry >> DECODE_TABLE_SYMBOL_SHIFT;
length = entry & DECODE_TABLE_LENGTH_MASK;
}
/* Discard the bits (or the remaining bits, if a subtable was required)
* of the codeword. */
bitstream_remove_bits(is, length);
/* Return the decoded symbol. */
return symbol;
}
/*
* Copy an LZ77 match at (dst - offset) to dst.
* The DECODE_TABLE_ENOUGH() macro evaluates to the maximum number of decode
* table entries, including all subtable entries, that may be required for
* decoding a given Huffman code. This depends on three parameters:
*
* The length and offset must be already validated --- that is, (dst - offset)
* can't underrun the output buffer, and (dst + length) can't overrun the output
* buffer. Also, the length cannot be 0.
* num_syms: the maximum number of symbols in the code
* table_bits: the number of bits with which the root table will be indexed
* max_codeword_len: the maximum allowed codeword length in the code
*
* @bufend points to the byte past the end of the output buffer. This function
* won't write any data beyond this position.
*
* Returns dst + length.
* Given these parameters, the utility program 'enough' from zlib, when passed
* the three arguments 'num_syms', 'table_bits', and 'max_codeword_len', will
* compute the maximum number of entries required. This has already been done
* for the combinations we need and incorporated into the macro below so that
* the mapping can be done at compilation time. If an unknown combination is
* used, then a compilation error will result. To fix this, use 'enough' to
* find the missing value and add it below. If that still doesn't fix the
* compilation error, then most likely a constraint would be violated by the
* requested parameters, so they cannot be used, at least without other changes
* to the decode table --- see DECODE_TABLE_SIZE().
*/
static forceinline u8 *lz_copy(u8 *dst, u32 length, u32 offset, const u8 *bufend,
u32 min_length)
#define DECODE_TABLE_ENOUGH(num_syms, table_bits, max_codeword_len) ( \
((num_syms) == 8 && (table_bits) == 7 && (max_codeword_len) == 15) ? 128 : \
((num_syms) == 8 && (table_bits) == 5 && (max_codeword_len) == 7) ? 36 : \
((num_syms) == 8 && (table_bits) == 6 && (max_codeword_len) == 7) ? 66 : \
((num_syms) == 8 && (table_bits) == 7 && (max_codeword_len) == 7) ? 128 : \
((num_syms) == 20 && (table_bits) == 5 && (max_codeword_len) == 15) ? 1062 : \
((num_syms) == 20 && (table_bits) == 6 && (max_codeword_len) == 15) ? 582 : \
((num_syms) == 20 && (table_bits) == 7 && (max_codeword_len) == 15) ? 390 : \
((num_syms) == 54 && (table_bits) == 9 && (max_codeword_len) == 15) ? 618 : \
((num_syms) == 54 && (table_bits) == 10 && (max_codeword_len) == 15) ? 1098 : \
((num_syms) == 249 && (table_bits) == 9 && (max_codeword_len) == 16) ? 878 : \
((num_syms) == 249 && (table_bits) == 10 && (max_codeword_len) == 16) ? 1326 : \
((num_syms) == 249 && (table_bits) == 11 && (max_codeword_len) == 16) ? 2318 : \
((num_syms) == 256 && (table_bits) == 9 && (max_codeword_len) == 15) ? 822 : \
((num_syms) == 256 && (table_bits) == 10 && (max_codeword_len) == 15) ? 1302 : \
((num_syms) == 256 && (table_bits) == 11 && (max_codeword_len) == 15) ? 2310 : \
((num_syms) == 512 && (table_bits) == 10 && (max_codeword_len) == 15) ? 1558 : \
((num_syms) == 512 && (table_bits) == 11 && (max_codeword_len) == 15) ? 2566 : \
((num_syms) == 512 && (table_bits) == 12 && (max_codeword_len) == 15) ? 4606 : \
((num_syms) == 656 && (table_bits) == 10 && (max_codeword_len) == 16) ? 1734 : \
((num_syms) == 656 && (table_bits) == 11 && (max_codeword_len) == 16) ? 2726 : \
((num_syms) == 656 && (table_bits) == 12 && (max_codeword_len) == 16) ? 4758 : \
((num_syms) == 799 && (table_bits) == 9 && (max_codeword_len) == 15) ? 1366 : \
((num_syms) == 799 && (table_bits) == 10 && (max_codeword_len) == 15) ? 1846 : \
((num_syms) == 799 && (table_bits) == 11 && (max_codeword_len) == 15) ? 2854 : \
-1)
/* Wrapper around DECODE_TABLE_ENOUGH() that does additional compile-time
* validation. */
#define DECODE_TABLE_SIZE(num_syms, table_bits, max_codeword_len) ( \
\
/* All values must be positive. */ \
STATIC_ASSERT_ZERO((num_syms) > 0) + \
STATIC_ASSERT_ZERO((table_bits) > 0) + \
STATIC_ASSERT_ZERO((max_codeword_len) > 0) + \
\
/* There cannot be more symbols than possible codewords. */ \
STATIC_ASSERT_ZERO((num_syms) <= 1U << (max_codeword_len)) + \
\
/* There is no reason for the root table to be indexed with
* more bits than the maximum codeword length. */ \
STATIC_ASSERT_ZERO((table_bits) <= (max_codeword_len)) + \
\
/* The maximum symbol value must fit in the 'symbol' field. */ \
STATIC_ASSERT_ZERO((num_syms) - 1 <= DECODE_TABLE_MAX_SYMBOL) + \
\
/* The maximum codeword length in the root table must fit in
* the 'length' field. */ \
STATIC_ASSERT_ZERO((table_bits) <= DECODE_TABLE_MAX_LENGTH) + \
\
/* The maximum codeword length in a subtable must fit in the
* 'length' field. */ \
STATIC_ASSERT_ZERO((max_codeword_len) - (table_bits) <= \
DECODE_TABLE_MAX_LENGTH) + \
\
/* The minimum subtable index must be greater than the maximum
* symbol value. If this were not the case, then there would
* be no way to tell whether a given root table entry is a
* "subtable pointer" or not. (An alternate solution would be
* to reserve a flag bit specifically for this purpose.) */ \
STATIC_ASSERT_ZERO((1U << table_bits) > (num_syms) - 1) + \
\
/* The needed 'enough' value must have been defined. */ \
STATIC_ASSERT_ZERO(DECODE_TABLE_ENOUGH( \
(num_syms), (table_bits), \
(max_codeword_len)) > 0) + \
\
/* The maximum subtable index must fit in the 'symbol' field. */\
STATIC_ASSERT_ZERO(DECODE_TABLE_ENOUGH( \
(num_syms), (table_bits), \
(max_codeword_len)) - 1 <= \
DECODE_TABLE_MAX_SYMBOL) + \
\
/* Finally, make the macro evaluate to the needed maximum
* number of decode table entries. */ \
DECODE_TABLE_ENOUGH((num_syms), (table_bits), \
(max_codeword_len)) \
)
/*
* Declare the decode table for a Huffman code, given several compile-time
* constants that describe the code. See DECODE_TABLE_ENOUGH() for details.
*
* Decode tables must be aligned to a DECODE_TABLE_ALIGNMENT-byte boundary.
* This implies that if a decode table is nested inside a dynamically allocated
* structure, then the outer structure must be allocated on a
* DECODE_TABLE_ALIGNMENT-byte aligned boundary as well.
*/
#define DECODE_TABLE(name, num_syms, table_bits, max_codeword_len) \
u16 name[DECODE_TABLE_SIZE((num_syms), (table_bits), \
(max_codeword_len))] \
_aligned_attribute(DECODE_TABLE_ALIGNMENT)
/*
* Declare the temporary "working_space" array needed for building the decode
* table for a Huffman code.
*/
#define DECODE_TABLE_WORKING_SPACE(name, num_syms, max_codeword_len) \
u16 name[2 * ((max_codeword_len) + 1) + (num_syms)];
extern int
make_huffman_decode_table(u16 decode_table[], unsigned num_syms,
unsigned table_bits, const u8 lens[],
unsigned max_codeword_len, u16 working_space[]);
/******************************************************************************/
/* LZ match copying */
/*----------------------------------------------------------------------------*/
static forceinline void
copy_word_unaligned(const void *src, void *dst)
{
const u8 *src = dst - offset;
store_word_unaligned(load_word_unaligned(src), dst);
}
static forceinline machine_word_t
repeat_u16(u16 b)
{
machine_word_t v = b;
STATIC_ASSERT(WORDBITS == 32 || WORDBITS == 64);
v |= v << 16;
v |= v << ((WORDBITS == 64) ? 32 : 0);
return v;
}
static forceinline machine_word_t
repeat_byte(u8 b)
{
return repeat_u16(((u16)b << 8) | b);
}
/*
* Copy an LZ77 match of 'length' bytes from the match source at 'out_next -
* offset' to the match destination at 'out_next'. The source and destination
* may overlap.
*
* This handles validating the length and offset. It is validated that the
* beginning of the match source is '>= out_begin' and that end of the match
* destination is '<= out_end'. The return value is 0 if the match was valid
* (and was copied), otherwise -1.
*
* 'min_length' is a hint which specifies the minimum possible match length.
* This should be a compile-time constant.
*/
static forceinline int
lz_copy(u32 length, u32 offset, u8 *out_begin, u8 *out_next, u8 *out_end,
u32 min_length)
{
const u8 *src;
u8 *end;
/* Validate the offset. */
if (unlikely(offset > out_next - out_begin))
return -1;
/*
* Try to copy one machine word at a time. On i386 and x86_64 this is
* faster than copying one byte at a time, unless the data is
* near-random and all the matches have very short lengths. Note that
* since this requires unaligned memory accesses, it won't necessarily
* be faster on every architecture.
* Fast path: copy a match which is no longer than a few words, is not
* overlapped such that copying a word at a time would produce incorrect
* results, and is not too close to the end of the buffer. Note that
* this might copy more than the length of the match, but that's okay in
* this scenario.
*/
src = out_next - offset;
if (UNALIGNED_ACCESS_IS_FAST && length <= 3 * WORDBYTES &&
offset >= WORDBYTES && out_end - out_next >= 3 * WORDBYTES)
{
copy_word_unaligned(src + WORDBYTES*0, out_next + WORDBYTES*0);
copy_word_unaligned(src + WORDBYTES*1, out_next + WORDBYTES*1);
copy_word_unaligned(src + WORDBYTES*2, out_next + WORDBYTES*2);
return 0;
}
/* Validate the length. This isn't needed in the fast path above, due
* to the additional conditions tested, but we do need it here. */
if (unlikely(length > out_end - out_next))
return -1;
end = out_next + length;
/*
* Try to copy one word at a time. On i386 and x86_64 this is faster
* than copying one byte at a time, unless the data is near-random and
* all the matches have very short lengths. Note that since this
* requires unaligned memory accesses, it won't necessarily be faster on
* every architecture.
*
* Also note that we might copy more than the length of the match. For
* example, if a word is 8 bytes and the match is of length 5, then
* we'll simply copy 8 bytes. This is okay as long as we don't write
* beyond the end of the output buffer, hence the check for (bufend -
* beyond the end of the output buffer, hence the check for (out_end -
* end >= WORDBYTES - 1).
*/
#ifdef FAST_UNALIGNED_ACCESS
u8 * const end = dst + length;
if (bufend - end >= (ptrdiff_t)(WORDBYTES - 1)) {
if (UNALIGNED_ACCESS_IS_FAST && likely(out_end - end >= WORDBYTES - 1))
{
if (offset >= WORDBYTES) {
/* The source and destination words don't overlap. */
/* To improve branch prediction, one iteration of this
* loop is unrolled. Most matches are short and will
* fail the first check. But if that check passes, then
* it becomes increasing likely that the match is long
* and we'll need to continue copying. */
copy_unaligned_word(src, dst);
src += WORDBYTES;
dst += WORDBYTES;
if (dst < end) {
do {
copy_unaligned_word(src, dst);
src += WORDBYTES;
dst += WORDBYTES;
} while (dst < end);
}
return end;
/* The source and destination words don't overlap. */
do {
copy_word_unaligned(src, out_next);
src += WORDBYTES;
out_next += WORDBYTES;
} while (out_next < end);
return 0;
} else if (offset == 1) {
/* Offset 1 matches are equivalent to run-length
* encoding of the previous byte. This case is common
* if the data contains many repeated bytes. */
size_t v = repeat_byte(*(dst - 1));
* if the data contains many repeated bytes. */
machine_word_t v = repeat_byte(*(out_next - 1));
do {
put_unaligned_word(v, dst);
store_word_unaligned(v, out_next);
src += WORDBYTES;
dst += WORDBYTES;
} while (dst < end);
return end;
out_next += WORDBYTES;
} while (out_next < end);
return 0;
}
/*
* We don't bother with special cases for other 'offset <
* WORDBYTES', which are usually rarer than 'offset == 1'. Extra
* checks will just slow things down. Actually, it's possible
* to handle all the 'offset < WORDBYTES' cases using the same
* code, but it still becomes more complicated doesn't seem any
* faster overall; it definitely slows down the more common
* 'offset == 1' case.
* WORDBYTES', which are usually rarer than 'offset == 1'.
* Extra checks will just slow things down. Actually, it's
* possible to handle all the 'offset < WORDBYTES' cases using
* the same code, but it still becomes more complicated doesn't
* seem any faster overall; it definitely slows down the more
* common 'offset == 1' case.
*/
}
#endif /* FAST_UNALIGNED_ACCESS */
/* Fall back to a bytewise copy. */
if (min_length >= 2) {
*dst++ = *src++;
length--;
}
if (min_length >= 3) {
*dst++ = *src++;
length--;
}
if (min_length >= 2)
*out_next++ = *src++;
if (min_length >= 3)
*out_next++ = *src++;
if (min_length >= 4)
*out_next++ = *src++;
do {
*dst++ = *src++;
} while (--length);
return dst;
*out_next++ = *src++;
} while (out_next != end);
return 0;
}
#endif /* _DECOMPRESS_COMMON_H */

324
src/lzx_common.c 100644
View File

@ -0,0 +1,324 @@
/*
* lzx_common.c - Common code for LZX compression and decompression.
*/
/*
* Copyright (C) 2012-2016 Eric Biggers
*
* This program is free software: you can redistribute it and/or modify it under
* the terms of the GNU General Public License as published by the Free Software
* Foundation, either version 2 of the License, or (at your option) any later
* version.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
* FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
* details.
*
* You should have received a copy of the GNU General Public License along with
* this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifdef HAVE_CONFIG_H
# include "config.h"
#endif
#include <string.h>
#ifdef __SSE2__
# include <emmintrin.h>
#endif
#ifdef __AVX2__
# include <immintrin.h>
#endif
#include "common_defs.h"
#include "lzx_common.h"
/* Mapping: offset slot => first match offset that uses that offset slot.
* The offset slots for repeat offsets map to "fake" offsets < 1. */
const s32 lzx_offset_slot_base[LZX_MAX_OFFSET_SLOTS + 1] = {
-2 , -1 , 0 , 1 , 2 , /* 0 --- 4 */
4 , 6 , 10 , 14 , 22 , /* 5 --- 9 */
30 , 46 , 62 , 94 , 126 , /* 10 --- 14 */
190 , 254 , 382 , 510 , 766 , /* 15 --- 19 */
1022 , 1534 , 2046 , 3070 , 4094 , /* 20 --- 24 */
6142 , 8190 , 12286 , 16382 , 24574 , /* 25 --- 29 */
32766 , 49150 , 65534 , 98302 , 131070 , /* 30 --- 34 */
196606 , 262142 , 393214 , 524286 , 655358 , /* 35 --- 39 */
786430 , 917502 , 1048574, 1179646, 1310718, /* 40 --- 44 */
1441790, 1572862, 1703934, 1835006, 1966078, /* 45 --- 49 */
2097150 /* extra */
};
/* Mapping: offset slot => how many extra bits must be read and added to the
* corresponding offset slot base to decode the match offset. */
const u8 lzx_extra_offset_bits[LZX_MAX_OFFSET_SLOTS] = {
0 , 0 , 0 , 0 , 1 ,
1 , 2 , 2 , 3 , 3 ,
4 , 4 , 5 , 5 , 6 ,
6 , 7 , 7 , 8 , 8 ,
9 , 9 , 10, 10, 11,
11, 12, 12, 13, 13,
14, 14, 15, 15, 16,
16, 17, 17, 17, 17,
17, 17, 17, 17, 17,
17, 17, 17, 17, 17,
};
/* Round the specified buffer size up to the next valid LZX window size, and
* return its order (log2). Or, if the buffer size is 0 or greater than the
* largest valid LZX window size, return 0. */
unsigned
lzx_get_window_order(size_t max_bufsize)
{
if (max_bufsize == 0 || max_bufsize > LZX_MAX_WINDOW_SIZE)
return 0;
return max(ilog2_ceil(max_bufsize), LZX_MIN_WINDOW_ORDER);
}
/* Given a valid LZX window order, return the number of symbols that will exist
* in the main Huffman code. */
unsigned
lzx_get_num_main_syms(unsigned window_order)
{
/* Note: one would expect that the maximum match offset would be
* 'window_size - LZX_MIN_MATCH_LEN', which would occur if the first two
* bytes were to match the last two bytes. However, the format
* disallows this case. This reduces the number of needed offset slots
* by 1. */
u32 window_size = (u32)1 << window_order;
u32 max_offset = window_size - LZX_MIN_MATCH_LEN - 1;
unsigned num_offset_slots = 30;
while (max_offset >= lzx_offset_slot_base[num_offset_slots])
num_offset_slots++;
return LZX_NUM_CHARS + (num_offset_slots * LZX_NUM_LEN_HEADERS);
}
static void
do_translate_target(void *target, s32 input_pos)
{
s32 abs_offset, rel_offset;
rel_offset = get_unaligned_le32(target);
if (rel_offset >= -input_pos && rel_offset < LZX_WIM_MAGIC_FILESIZE) {
if (rel_offset < LZX_WIM_MAGIC_FILESIZE - input_pos) {
/* "good translation" */
abs_offset = rel_offset + input_pos;
} else {
/* "compensating translation" */
abs_offset = rel_offset - LZX_WIM_MAGIC_FILESIZE;
}
put_unaligned_le32(abs_offset, target);
}
}
static void
undo_translate_target(void *target, s32 input_pos)
{
s32 abs_offset, rel_offset;
abs_offset = get_unaligned_le32(target);
if (abs_offset >= 0) {
if (abs_offset < LZX_WIM_MAGIC_FILESIZE) {
/* "good translation" */
rel_offset = abs_offset - input_pos;
put_unaligned_le32(rel_offset, target);
}
} else {
if (abs_offset >= -input_pos) {
/* "compensating translation" */
rel_offset = abs_offset + LZX_WIM_MAGIC_FILESIZE;
put_unaligned_le32(rel_offset, target);
}
}
}
/*
* Do or undo the 'E8' preprocessing used in LZX. Before compression, the
* uncompressed data is preprocessed by changing the targets of x86 CALL
* instructions from relative offsets to absolute offsets. After decompression,
* the translation is undone by changing the targets of x86 CALL instructions
* from absolute offsets to relative offsets.
*
* Note that despite its intent, E8 preprocessing can be done on any data even
* if it is not actually x86 machine code. In fact, E8 preprocessing appears to
* always be used in LZX-compressed resources in WIM files; there is no bit to
* indicate whether it is used or not, unlike in the LZX compressed format as
* used in cabinet files, where a bit is reserved for that purpose.
*
* E8 preprocessing is disabled in the last 6 bytes of the uncompressed data,
* which really means the 5-byte call instruction cannot start in the last 10
* bytes of the uncompressed data. This is one of the errors in the LZX
* documentation.
*
* E8 preprocessing does not appear to be disabled after the 32768th chunk of a
* WIM resource, which apparently is another difference from the LZX compression
* used in cabinet files.
*
* E8 processing is supposed to take the file size as a parameter, as it is used
* in calculating the translated jump targets. But in WIM files, this file size
* is always the same (LZX_WIM_MAGIC_FILESIZE == 12000000).
*/
static void
lzx_e8_filter(u8 *data, u32 size, void (*process_target)(void *, s32))
{
#if !defined(__SSE2__) && !defined(__AVX2__)
/*
* A worthwhile optimization is to push the end-of-buffer check into the
* relatively rare E8 case. This is possible if we replace the last six
* bytes of data with E8 bytes; then we are guaranteed to hit an E8 byte
* before reaching end-of-buffer. In addition, this scheme guarantees
* that no translation can begin following an E8 byte in the last 10
* bytes because a 4-byte offset containing E8 as its high byte is a
* large negative number that is not valid for translation. That is
* exactly what we need.
*/
u8 *tail;
u8 saved_bytes[6];
u8 *p;
if (size <= 10)
return;
tail = &data[size - 6];
memcpy(saved_bytes, tail, 6);
memset(tail, 0xE8, 6);
p = data;
for (;;) {
while (*p != 0xE8)
p++;
if (p >= tail)
break;
(*process_target)(p + 1, p - data);
p += 5;
}
memcpy(tail, saved_bytes, 6);
#else
/* SSE2 or AVX-2 optimized version for x86_64 */
u8 *p = data;
u64 valid_mask = ~0;
if (size <= 10)
return;
#ifdef __AVX2__
# define ALIGNMENT_REQUIRED 32
#else
# define ALIGNMENT_REQUIRED 16
#endif
/* Process one byte at a time until the pointer is properly aligned. */
while ((uintptr_t)p % ALIGNMENT_REQUIRED != 0) {
if (p >= data + size - 10)
return;
if (*p == 0xE8 && (valid_mask & 1)) {
(*process_target)(p + 1, p - data);
valid_mask &= ~0x1F;
}
p++;
valid_mask >>= 1;
valid_mask |= (u64)1 << 63;
}
if (data + size - p >= 64) {
/* Vectorized processing */
/* Note: we use a "trap" E8 byte to eliminate the need to check
* for end-of-buffer in the inner loop. This byte is carefully
* positioned so that it will never be changed by a previous
* translation before it is detected. */
u8 *trap = p + ((data + size - p) & ~31) - 32 + 4;
u8 saved_byte = *trap;
*trap = 0xE8;
for (;;) {
u32 e8_mask;
u8 *orig_p = p;
#ifdef __AVX2__
const __m256i e8_bytes = _mm256_set1_epi8(0xE8);
for (;;) {
__m256i bytes = *(const __m256i *)p;
__m256i cmpresult = _mm256_cmpeq_epi8(bytes, e8_bytes);
e8_mask = _mm256_movemask_epi8(cmpresult);
if (e8_mask)
break;
p += 32;
}
#else
const __m128i e8_bytes = _mm_set1_epi8(0xE8);
for (;;) {
/* Read the next 32 bytes of data and test them
* for E8 bytes. */
__m128i bytes1 = *(const __m128i *)p;
__m128i bytes2 = *(const __m128i *)(p + 16);
__m128i cmpresult1 = _mm_cmpeq_epi8(bytes1, e8_bytes);
__m128i cmpresult2 = _mm_cmpeq_epi8(bytes2, e8_bytes);
u32 mask1 = _mm_movemask_epi8(cmpresult1);
u32 mask2 = _mm_movemask_epi8(cmpresult2);
/* The masks have a bit set for each E8 byte.
* We stay in this fast inner loop as long as
* there are no E8 bytes. */
if (mask1 | mask2) {
e8_mask = mask1 | (mask2 << 16);
break;
}
p += 32;
}
#endif
/* Did we pass over data with no E8 bytes? */
if (p != orig_p)
valid_mask = ~0;
/* Are we nearing end-of-buffer? */
if (p == trap - 4)
break;
/* Process the E8 bytes. However, the AND with
* 'valid_mask' ensures we never process an E8 byte that
* was itself part of a translation target. */
while ((e8_mask &= valid_mask)) {
unsigned bit = bsf32(e8_mask);
(*process_target)(p + bit + 1, p + bit - data);
valid_mask &= ~((u64)0x1F << bit);
}
valid_mask >>= 32;
valid_mask |= 0xFFFFFFFF00000000;
p += 32;
}
*trap = saved_byte;
}
/* Approaching the end of the buffer; process one byte a time. */
while (p < data + size - 10) {
if (*p == 0xE8 && (valid_mask & 1)) {
(*process_target)(p + 1, p - data);
valid_mask &= ~0x1F;
}
p++;
valid_mask >>= 1;
valid_mask |= (u64)1 << 63;
}
#endif /* __SSE2__ || __AVX2__ */
}
void
lzx_preprocess(u8 *data, u32 size)
{
lzx_e8_filter(data, size, do_translate_target);
}
void
lzx_postprocess(u8 *data, u32 size)
{
lzx_e8_filter(data, size, undo_translate_target);
}

29
src/lzx_common.h 100644
View File

@ -0,0 +1,29 @@
/*
* lzx_common.h
*
* Declarations shared between LZX compression and decompression.
*/
#ifndef _LZX_COMMON_H
#define _LZX_COMMON_H
#include "lzx_constants.h"
#include "common_defs.h"
extern const s32 lzx_offset_slot_base[LZX_MAX_OFFSET_SLOTS + 1];
extern const u8 lzx_extra_offset_bits[LZX_MAX_OFFSET_SLOTS];
extern unsigned
lzx_get_window_order(size_t max_bufsize);
extern unsigned
lzx_get_num_main_syms(unsigned window_order);
extern void
lzx_preprocess(u8 *data, u32 size);
extern void
lzx_postprocess(u8 *data, u32 size);
#endif /* _LZX_COMMON_H */

103
src/lzx_constants.h 100644
View File

@ -0,0 +1,103 @@
/*
* lzx_constants.h
*
* Constants for the LZX compression format.
*/
#ifndef _LZX_CONSTANTS_H
#define _LZX_CONSTANTS_H
/* Number of literal byte values. */
#define LZX_NUM_CHARS 256
/* The smallest and largest allowed match lengths. */
#define LZX_MIN_MATCH_LEN 2
#define LZX_MAX_MATCH_LEN 257
/* Number of distinct match lengths that can be represented. */
#define LZX_NUM_LENS (LZX_MAX_MATCH_LEN - LZX_MIN_MATCH_LEN + 1)
/* Number of match lengths for which no length symbol is required. */
#define LZX_NUM_PRIMARY_LENS 7
#define LZX_NUM_LEN_HEADERS (LZX_NUM_PRIMARY_LENS + 1)
/* Valid values of the 3-bit block type field. */
#define LZX_BLOCKTYPE_VERBATIM 1
#define LZX_BLOCKTYPE_ALIGNED 2
#define LZX_BLOCKTYPE_UNCOMPRESSED 3
/* 'LZX_MIN_WINDOW_SIZE' and 'LZX_MAX_WINDOW_SIZE' are the minimum and maximum
* sizes of the sliding window. */
#define LZX_MIN_WINDOW_ORDER 15
#define LZX_MAX_WINDOW_ORDER 21
#define LZX_MIN_WINDOW_SIZE (1UL << LZX_MIN_WINDOW_ORDER) /* 32768 */
#define LZX_MAX_WINDOW_SIZE (1UL << LZX_MAX_WINDOW_ORDER) /* 2097152 */
/* Maximum number of offset slots. (The actual number of offset slots depends
* on the window size.) */
#define LZX_MAX_OFFSET_SLOTS 50
/* Maximum number of symbols in the main code. (The actual number of symbols in
* the main code depends on the window size.) */
#define LZX_MAINCODE_MAX_NUM_SYMBOLS \
(LZX_NUM_CHARS + (LZX_MAX_OFFSET_SLOTS * LZX_NUM_LEN_HEADERS))
/* Number of symbols in the length code. */
#define LZX_LENCODE_NUM_SYMBOLS (LZX_NUM_LENS - LZX_NUM_PRIMARY_LENS)
/* Number of symbols in the pre-code. */
#define LZX_PRECODE_NUM_SYMBOLS 20
/* Number of bits in which each pre-code codeword length is represented. */
#define LZX_PRECODE_ELEMENT_SIZE 4
/* Number of low-order bits of each match offset that are entropy-encoded in
* aligned offset blocks. */
#define LZX_NUM_ALIGNED_OFFSET_BITS 3
/* Number of symbols in the aligned offset code. */
#define LZX_ALIGNEDCODE_NUM_SYMBOLS (1 << LZX_NUM_ALIGNED_OFFSET_BITS)
/* Mask for the match offset bits that are entropy-encoded in aligned offset
* blocks. */
#define LZX_ALIGNED_OFFSET_BITMASK ((1 << LZX_NUM_ALIGNED_OFFSET_BITS) - 1)
/* Number of bits in which each aligned offset codeword length is represented. */
#define LZX_ALIGNEDCODE_ELEMENT_SIZE 3
/* The first offset slot which requires an aligned offset symbol in aligned
* offset blocks. */
#define LZX_MIN_ALIGNED_OFFSET_SLOT 8
/* The offset slot base for LZX_MIN_ALIGNED_OFFSET_SLOT. */
#define LZX_MIN_ALIGNED_OFFSET 14
/* The maximum number of extra offset bits in verbatim blocks. (One would need
* to subtract LZX_NUM_ALIGNED_OFFSET_BITS to get the number of extra offset
* bits in *aligned* blocks.) */
#define LZX_MAX_NUM_EXTRA_BITS 17
/* Maximum lengths (in bits) for length-limited Huffman code construction. */
#define LZX_MAX_MAIN_CODEWORD_LEN 16
#define LZX_MAX_LEN_CODEWORD_LEN 16
#define LZX_MAX_PRE_CODEWORD_LEN ((1 << LZX_PRECODE_ELEMENT_SIZE) - 1)
#define LZX_MAX_ALIGNED_CODEWORD_LEN ((1 << LZX_ALIGNEDCODE_ELEMENT_SIZE) - 1)
/* For LZX-compressed blocks in WIM resources, this value is always used as the
* filesize parameter for the call instruction (0xe8 byte) preprocessing, even
* though the blocks themselves are not this size, and the size of the actual
* file resource in the WIM file is very likely to be something entirely
* different as well. */
#define LZX_WIM_MAGIC_FILESIZE 12000000
/* Assumed LZX block size when the encoded block size begins with a 0 bit.
* This is probably WIM-specific. */
#define LZX_DEFAULT_BLOCK_SIZE 32768
/* Number of offsets in the recent (or "repeat") offsets queue. */
#define LZX_NUM_RECENT_OFFSETS 3
/* An offset of n bytes is actually encoded as (n + LZX_OFFSET_ADJUSTMENT). */
#define LZX_OFFSET_ADJUSTMENT (LZX_NUM_RECENT_OFFSETS - 1)
#endif /* _LZX_CONSTANTS_H */

View File

@ -1,10 +1,11 @@
/*
* lzx_decompress.c - A decompressor for the LZX compression format, which can
* be used in "System Compressed" files. This is based on the code from wimlib.
* This code only supports a window size (dictionary size) of 32768 bytes, since
* this is the only size used in System Compression.
* lzx_decompress.c
*
* Copyright (C) 2015 Eric Biggers
* A decompressor for the LZX compression format, as used in WIM files.
*/
/*
* Copyright (C) 2012-2016 Eric Biggers
*
* This program is free software: you can redistribute it and/or modify it under
* the terms of the GNU General Public License as published by the Free Software
@ -20,276 +21,157 @@
* this program. If not, see <http://www.gnu.org/licenses/>.
*/
/*
* LZX is an LZ77 and Huffman-code based compression format that has many
* similarities to DEFLATE (the format used by zlib/gzip). The compression
* ratio is as good or better than DEFLATE. See lzx_compress.c for a format
* overview, and see https://en.wikipedia.org/wiki/LZX_(algorithm) for a
* historical overview. Here I make some pragmatic notes.
*
* The old specification for LZX is the document "Microsoft LZX Data Compression
* Format" (1997). It defines the LZX format as used in cabinet files. Allowed
* window sizes are 2^n where 15 <= n <= 21. However, this document contains
* several errors, so don't read too much into it...
*
* The new specification for LZX is the document "[MS-PATCH]: LZX DELTA
* Compression and Decompression" (2014). It defines the LZX format as used by
* Microsoft's binary patcher. It corrects several errors in the 1997 document
* and extends the format in several ways --- namely, optional reference data,
* up to 2^25 byte windows, and longer match lengths.
*
* WIM files use a more restricted form of LZX. No LZX DELTA extensions are
* present, the window is not "sliding", E8 preprocessing is done
* unconditionally with a fixed file size, and the maximum window size is always
* 2^15 bytes (equal to the size of each "chunk" in a compressed WIM resource).
* This code is primarily intended to implement this form of LZX. But although
* not compatible with WIMGAPI, this code also supports maximum window sizes up
* to 2^21 bytes.
*
* TODO: Add support for window sizes up to 2^25 bytes.
*/
#ifdef HAVE_CONFIG_H
#include "config.h"
# include "config.h"
#endif
#include <errno.h>
#include <stdlib.h>
#include <string.h>
#include <ntfs-3g/misc.h>
#include "decompress_common.h"
#include "lzx_common.h"
#include "system_compression.h"
/* Number of literal byte values */
#define LZX_NUM_CHARS 256
/* The smallest and largest allowed match lengths */
#define LZX_MIN_MATCH_LEN 2
#define LZX_MAX_MATCH_LEN 257
/* Number of distinct match lengths that can be represented */
#define LZX_NUM_LENS (LZX_MAX_MATCH_LEN - LZX_MIN_MATCH_LEN + 1)
/* Number of match lengths for which no length symbol is required */
#define LZX_NUM_PRIMARY_LENS 7
#define LZX_NUM_LEN_HEADERS (LZX_NUM_PRIMARY_LENS + 1)
/* Valid values of the 3-bit block type field */
#define LZX_BLOCKTYPE_VERBATIM 1
#define LZX_BLOCKTYPE_ALIGNED 2
#define LZX_BLOCKTYPE_UNCOMPRESSED 3
/* Number of offset slots for a window size of 32768 */
#define LZX_NUM_OFFSET_SLOTS 30
/* Number of symbols in the main code for a window size of 32768 */
#define LZX_MAINCODE_NUM_SYMBOLS \
(LZX_NUM_CHARS + (LZX_NUM_OFFSET_SLOTS * LZX_NUM_LEN_HEADERS))
/* Number of symbols in the length code */
#define LZX_LENCODE_NUM_SYMBOLS (LZX_NUM_LENS - LZX_NUM_PRIMARY_LENS)
/* Number of symbols in the precode */
#define LZX_PRECODE_NUM_SYMBOLS 20
/* Number of bits in which each precode codeword length is represented */
#define LZX_PRECODE_ELEMENT_SIZE 4
/* Number of low-order bits of each match offset that are entropy-encoded in
* aligned offset blocks */
#define LZX_NUM_ALIGNED_OFFSET_BITS 3
/* Number of symbols in the aligned offset code */
#define LZX_ALIGNEDCODE_NUM_SYMBOLS (1 << LZX_NUM_ALIGNED_OFFSET_BITS)
/* Mask for the match offset bits that are entropy-encoded in aligned offset
* blocks */
#define LZX_ALIGNED_OFFSET_BITMASK ((1 << LZX_NUM_ALIGNED_OFFSET_BITS) - 1)
/* Number of bits in which each aligned offset codeword length is represented */
#define LZX_ALIGNEDCODE_ELEMENT_SIZE 3
/* Maximum lengths (in bits) of the codewords in each Huffman code */
#define LZX_MAX_MAIN_CODEWORD_LEN 16
#define LZX_MAX_LEN_CODEWORD_LEN 16
#define LZX_MAX_PRE_CODEWORD_LEN ((1 << LZX_PRECODE_ELEMENT_SIZE) - 1)
#define LZX_MAX_ALIGNED_CODEWORD_LEN ((1 << LZX_ALIGNEDCODE_ELEMENT_SIZE) - 1)
/* The default "filesize" value used in pre/post-processing. In the LZX format
* used in cabinet files this value must be given to the decompressor, whereas
* in the LZX format used in WIM files and system-compressed files this value is
* fixed at 12000000. */
#define LZX_DEFAULT_FILESIZE 12000000
/* Assumed block size when the encoded block size begins with a 0 bit. */
#define LZX_DEFAULT_BLOCK_SIZE 32768
/* Number of offsets in the recent (or "repeat") offsets queue. */
#define LZX_NUM_RECENT_OFFSETS 3
/* These values are chosen for fast decompression. */
#define LZX_MAINCODE_TABLEBITS 11
#define LZX_LENCODE_TABLEBITS 10
#define LZX_LENCODE_TABLEBITS 9
#define LZX_PRECODE_TABLEBITS 6
#define LZX_ALIGNEDCODE_TABLEBITS 7
#define LZX_READ_LENS_MAX_OVERRUN 50
#define LZX_READ_LENS_MAX_OVERRUN 50
/* Mapping: offset slot => first match offset that uses that offset slot.
*/
static const u32 lzx_offset_slot_base[LZX_NUM_OFFSET_SLOTS + 1] = {
0 , 1 , 2 , 3 , 4 , /* 0 --- 4 */
6 , 8 , 12 , 16 , 24 , /* 5 --- 9 */
32 , 48 , 64 , 96 , 128 , /* 10 --- 14 */
192 , 256 , 384 , 512 , 768 , /* 15 --- 19 */
1024 , 1536 , 2048 , 3072 , 4096 , /* 20 --- 24 */
6144 , 8192 , 12288 , 16384 , 24576 , /* 25 --- 29 */
32768 , /* extra */
};
/* Mapping: offset slot => how many extra bits must be read and added to the
* corresponding offset slot base to decode the match offset. */
static const u8 lzx_extra_offset_bits[LZX_NUM_OFFSET_SLOTS] = {
0 , 0 , 0 , 0 , 1 ,
1 , 2 , 2 , 3 , 3 ,
4 , 4 , 5 , 5 , 6 ,
6 , 7 , 7 , 8 , 8 ,
9 , 9 , 10, 10, 11,
11, 12, 12, 13, 13,
};
/* Reusable heap-allocated memory for LZX decompression */
struct lzx_decompressor {
/* Huffman decoding tables, and arrays that map symbols to codeword
* lengths */
DECODE_TABLE(maincode_decode_table, LZX_MAINCODE_MAX_NUM_SYMBOLS,
LZX_MAINCODE_TABLEBITS, LZX_MAX_MAIN_CODEWORD_LEN);
u8 maincode_lens[LZX_MAINCODE_MAX_NUM_SYMBOLS + LZX_READ_LENS_MAX_OVERRUN];
u16 maincode_decode_table[(1 << LZX_MAINCODE_TABLEBITS) +
(LZX_MAINCODE_NUM_SYMBOLS * 2)];
u8 maincode_lens[LZX_MAINCODE_NUM_SYMBOLS + LZX_READ_LENS_MAX_OVERRUN];
u16 lencode_decode_table[(1 << LZX_LENCODE_TABLEBITS) +
(LZX_LENCODE_NUM_SYMBOLS * 2)];
DECODE_TABLE(lencode_decode_table, LZX_LENCODE_NUM_SYMBOLS,
LZX_LENCODE_TABLEBITS, LZX_MAX_LEN_CODEWORD_LEN);
u8 lencode_lens[LZX_LENCODE_NUM_SYMBOLS + LZX_READ_LENS_MAX_OVERRUN];
union {
DECODE_TABLE(alignedcode_decode_table, LZX_ALIGNEDCODE_NUM_SYMBOLS,
LZX_ALIGNEDCODE_TABLEBITS, LZX_MAX_ALIGNED_CODEWORD_LEN);
u8 alignedcode_lens[LZX_ALIGNEDCODE_NUM_SYMBOLS];
};
u16 alignedcode_decode_table[(1 << LZX_ALIGNEDCODE_TABLEBITS) +
(LZX_ALIGNEDCODE_NUM_SYMBOLS * 2)];
u8 alignedcode_lens[LZX_ALIGNEDCODE_NUM_SYMBOLS];
union {
DECODE_TABLE(precode_decode_table, LZX_PRECODE_NUM_SYMBOLS,
LZX_PRECODE_TABLEBITS, LZX_MAX_PRE_CODEWORD_LEN);
u8 precode_lens[LZX_PRECODE_NUM_SYMBOLS];
u8 extra_offset_bits[LZX_MAX_OFFSET_SLOTS];
};
u16 precode_decode_table[(1 << LZX_PRECODE_TABLEBITS) +
(LZX_PRECODE_NUM_SYMBOLS * 2)];
u8 precode_lens[LZX_PRECODE_NUM_SYMBOLS];
union {
DECODE_TABLE_WORKING_SPACE(maincode_working_space,
LZX_MAINCODE_MAX_NUM_SYMBOLS,
LZX_MAX_MAIN_CODEWORD_LEN);
DECODE_TABLE_WORKING_SPACE(lencode_working_space,
LZX_LENCODE_NUM_SYMBOLS,
LZX_MAX_LEN_CODEWORD_LEN);
DECODE_TABLE_WORKING_SPACE(alignedcode_working_space,
LZX_ALIGNEDCODE_NUM_SYMBOLS,
LZX_MAX_ALIGNED_CODEWORD_LEN);
DECODE_TABLE_WORKING_SPACE(precode_working_space,
LZX_PRECODE_NUM_SYMBOLS,
LZX_MAX_PRE_CODEWORD_LEN);
};
/* Temporary space for make_huffman_decode_table() */
u16 working_space[2 * (1 + LZX_MAX_MAIN_CODEWORD_LEN) +
LZX_MAINCODE_NUM_SYMBOLS];
};
unsigned window_order;
unsigned num_main_syms;
static void undo_e8_translation(void *target, s32 input_pos)
{
s32 abs_offset, rel_offset;
/* Like lzx_extra_offset_bits[], but does not include the entropy-coded
* bits of aligned offset blocks */
u8 extra_offset_bits_minus_aligned[LZX_MAX_OFFSET_SLOTS];
abs_offset = get_unaligned_le32(target);
if (abs_offset >= 0) {
if (abs_offset < LZX_DEFAULT_FILESIZE) {
/* "good translation" */
rel_offset = abs_offset - input_pos;
put_unaligned_le32(rel_offset, target);
}
} else {
if (abs_offset >= -input_pos) {
/* "compensating translation" */
rel_offset = abs_offset + LZX_DEFAULT_FILESIZE;
put_unaligned_le32(rel_offset, target);
}
}
}
} _aligned_attribute(DECODE_TABLE_ALIGNMENT);
/*
* Undo the 'E8' preprocessing used in LZX. Before compression, the
* uncompressed data was preprocessed by changing the targets of suspected x86
* CALL instructions from relative offsets to absolute offsets. After
* match/literal decoding, the decompressor must undo the translation.
*/
static void lzx_postprocess(u8 *data, u32 size)
{
/*
* A worthwhile optimization is to push the end-of-buffer check into the
* relatively rare E8 case. This is possible if we replace the last six
* bytes of data with E8 bytes; then we are guaranteed to hit an E8 byte
* before reaching end-of-buffer. In addition, this scheme guarantees
* that no translation can begin following an E8 byte in the last 10
* bytes because a 4-byte offset containing E8 as its high byte is a
* large negative number that is not valid for translation. That is
* exactly what we need.
*/
u8 *tail;
u8 saved_bytes[6];
u8 *p;
if (size <= 10)
return;
tail = &data[size - 6];
memcpy(saved_bytes, tail, 6);
memset(tail, 0xE8, 6);
p = data;
for (;;) {
while (*p != 0xE8)
p++;
if (p >= tail)
break;
undo_e8_translation(p + 1, p - data);
p += 5;
}
memcpy(tail, saved_bytes, 6);
}
/* Read a Huffman-encoded symbol using the precode. */
static forceinline unsigned read_presym(const struct lzx_decompressor *d,
struct input_bitstream *is)
/* Read a Huffman-encoded symbol using the precode. */
static forceinline unsigned
read_presym(const struct lzx_decompressor *d, struct input_bitstream *is)
{
return read_huffsym(is, d->precode_decode_table,
LZX_PRECODE_TABLEBITS, LZX_MAX_PRE_CODEWORD_LEN);
}
/* Read a Huffman-encoded symbol using the main code. */
static forceinline unsigned read_mainsym(const struct lzx_decompressor *d,
struct input_bitstream *is)
/* Read a Huffman-encoded symbol using the main code. */
static forceinline unsigned
read_mainsym(const struct lzx_decompressor *d, struct input_bitstream *is)
{
return read_huffsym(is, d->maincode_decode_table,
LZX_MAINCODE_TABLEBITS, LZX_MAX_MAIN_CODEWORD_LEN);
}
/* Read a Huffman-encoded symbol using the length code. */
static forceinline unsigned read_lensym(const struct lzx_decompressor *d,
struct input_bitstream *is)
/* Read a Huffman-encoded symbol using the length code. */
static forceinline unsigned
read_lensym(const struct lzx_decompressor *d, struct input_bitstream *is)
{
return read_huffsym(is, d->lencode_decode_table,
LZX_LENCODE_TABLEBITS, LZX_MAX_LEN_CODEWORD_LEN);
}
/* Read a Huffman-encoded symbol using the aligned offset code. */
static forceinline unsigned read_alignedsym(const struct lzx_decompressor *d,
struct input_bitstream *is)
/* Read a Huffman-encoded symbol using the aligned offset code. */
static forceinline unsigned
read_alignedsym(const struct lzx_decompressor *d, struct input_bitstream *is)
{
return read_huffsym(is, d->alignedcode_decode_table,
LZX_ALIGNEDCODE_TABLEBITS,
LZX_MAX_ALIGNED_CODEWORD_LEN);
LZX_ALIGNEDCODE_TABLEBITS, LZX_MAX_ALIGNED_CODEWORD_LEN);
}
/*
* Read the precode from the compressed input bitstream, then use it to decode
* @num_lens codeword length values.
*
* @is: The input bitstream.
*
* @lens: An array that contains the length values from the previous time
* the codeword lengths for this Huffman code were read, or all 0's
* if this is the first time. This array must have at least
* (@num_lens + LZX_READ_LENS_MAX_OVERRUN) entries.
*
* @num_lens: Number of length values to decode.
*
* Returns 0 on success, or -1 if the data was invalid.
* Read a precode from the compressed input bitstream, then use it to decode
* @num_lens codeword length values and write them to @lens.
*/
static int lzx_read_codeword_lens(struct lzx_decompressor *d,
struct input_bitstream *is,
u8 *lens, unsigned num_lens)
static int
lzx_read_codeword_lens(struct lzx_decompressor *d, struct input_bitstream *is,
u8 *lens, unsigned num_lens)
{
u8 *len_ptr = lens;
u8 *lens_end = lens + num_lens;
int i;
/* Read the lengths of the precode codewords. These are given
* explicitly. */
for (i = 0; i < LZX_PRECODE_NUM_SYMBOLS; i++) {
/* Read the lengths of the precode codewords. These are stored
* explicitly. */
for (int i = 0; i < LZX_PRECODE_NUM_SYMBOLS; i++) {
d->precode_lens[i] =
bitstream_read_bits(is, LZX_PRECODE_ELEMENT_SIZE);
}
/* Make the decoding table for the precode. */
/* Build the decoding table for the precode. */
if (make_huffman_decode_table(d->precode_decode_table,
LZX_PRECODE_NUM_SYMBOLS,
LZX_PRECODE_TABLEBITS,
d->precode_lens,
LZX_MAX_PRE_CODEWORD_LEN,
d->working_space))
d->precode_working_space))
return -1;
/* Decode the codeword lengths. */
@ -322,7 +204,7 @@ static int lzx_read_codeword_lens(struct lzx_decompressor *d,
/* Run of identical lengths */
run_len = 4 + bitstream_read_bits(is, 1);
presym = read_presym(d, is);
if (presym > 17)
if (unlikely(presym > 17))
return -1;
len = *len_ptr - presym;
if ((s8)len < 0)
@ -332,7 +214,8 @@ static int lzx_read_codeword_lens(struct lzx_decompressor *d,
do {
*len_ptr++ = len;
} while (--run_len);
/* Worst case overrun is when presym == 18,
/*
* The worst case overrun is when presym == 18,
* run_len == 20 + 31, and only 1 length was remaining.
* So LZX_READ_LENS_MAX_OVERRUN == 50.
*
@ -340,7 +223,8 @@ static int lzx_read_codeword_lens(struct lzx_decompressor *d,
* can corrupt the previous values in the second half.
* This doesn't really matter because the resulting
* lengths will still be in range, and data that
* generates overruns is invalid anyway. */
* generates overruns is invalid anyway.
*/
}
} while (len_ptr < lens_end);
@ -348,115 +232,82 @@ static int lzx_read_codeword_lens(struct lzx_decompressor *d,
}
/*
* Read the header of an LZX block and save the block type and (uncompressed)
* size in *block_type_ret and *block_size_ret, respectively.
*
* If the block is compressed, also update the Huffman decode @tables with the
* new Huffman codes. If the block is uncompressed, also update the match
* offset @queue with the new match offsets.
*
* Return 0 on success, or -1 if the data was invalid.
* Read the header of an LZX block. For all block types, the block type and
* size is saved in *block_type_ret and *block_size_ret, respectively. For
* compressed blocks, the codeword lengths are also saved. For uncompressed
* blocks, the recent offsets queue is also updated.
*/
static int lzx_read_block_header(struct lzx_decompressor *d,
struct input_bitstream *is,
int *block_type_ret,
u32 *block_size_ret,
u32 recent_offsets[])
static int
lzx_read_block_header(struct lzx_decompressor *d, struct input_bitstream *is,
u32 recent_offsets[], int *block_type_ret,
u32 *block_size_ret)
{
int block_type;
u32 block_size;
int i;
bitstream_ensure_bits(is, 4);
/* The first three bits tell us what kind of block it is, and should be
* one of the LZX_BLOCKTYPE_* values. */
/* Read the block type. */
block_type = bitstream_pop_bits(is, 3);
/* Read the block size. */
/* Read the block size. */
if (bitstream_pop_bits(is, 1)) {
block_size = LZX_DEFAULT_BLOCK_SIZE;
} else {
block_size = 0;
block_size |= bitstream_read_bits(is, 8);
block_size <<= 8;
block_size |= bitstream_read_bits(is, 8);
block_size = bitstream_read_bits(is, 16);
if (d->window_order >= 16) {
block_size <<= 8;
block_size |= bitstream_read_bits(is, 8);
}
}
switch (block_type) {
case LZX_BLOCKTYPE_ALIGNED:
/* Read the aligned offset code and prepare its decode table.
*/
/* Read the aligned offset codeword lengths. */
for (i = 0; i < LZX_ALIGNEDCODE_NUM_SYMBOLS; i++) {
for (int i = 0; i < LZX_ALIGNEDCODE_NUM_SYMBOLS; i++) {
d->alignedcode_lens[i] =
bitstream_read_bits(is,
LZX_ALIGNEDCODE_ELEMENT_SIZE);
}
if (make_huffman_decode_table(d->alignedcode_decode_table,
LZX_ALIGNEDCODE_NUM_SYMBOLS,
LZX_ALIGNEDCODE_TABLEBITS,
d->alignedcode_lens,
LZX_MAX_ALIGNED_CODEWORD_LEN,
d->working_space))
return -1;
/* Fall though, since the rest of the header for aligned offset
* blocks is the same as that for verbatim blocks. */
case LZX_BLOCKTYPE_VERBATIM:
/* Read the main code and prepare its decode table.
*
* Note that the codeword lengths in the main code are encoded
* in two parts: one part for literal symbols, and one part for
* match symbols. */
/* Read the main codeword lengths, which are divided into two
* parts: literal symbols and match headers. */
if (lzx_read_codeword_lens(d, is, d->maincode_lens,
LZX_NUM_CHARS))
return -1;
if (lzx_read_codeword_lens(d, is,
d->maincode_lens + LZX_NUM_CHARS,
LZX_MAINCODE_NUM_SYMBOLS - LZX_NUM_CHARS))
if (lzx_read_codeword_lens(d, is, d->maincode_lens + LZX_NUM_CHARS,
d->num_main_syms - LZX_NUM_CHARS))
return -1;
if (make_huffman_decode_table(d->maincode_decode_table,
LZX_MAINCODE_NUM_SYMBOLS,
LZX_MAINCODE_TABLEBITS,
d->maincode_lens,
LZX_MAX_MAIN_CODEWORD_LEN,
d->working_space))
return -1;
/* Read the length code and prepare its decode table. */
/* Read the length codeword lengths. */
if (lzx_read_codeword_lens(d, is, d->lencode_lens,
LZX_LENCODE_NUM_SYMBOLS))
return -1;
if (make_huffman_decode_table(d->lencode_decode_table,
LZX_LENCODE_NUM_SYMBOLS,
LZX_LENCODE_TABLEBITS,
d->lencode_lens,
LZX_MAX_LEN_CODEWORD_LEN,
d->working_space))
return -1;
break;
case LZX_BLOCKTYPE_UNCOMPRESSED:
/* Before reading the three recent offsets from the uncompressed
* block header, the stream must be aligned on a 16-bit
* boundary. But if the stream is *already* aligned, then the
* next 16 bits must be discarded. */
/*
* The header of an uncompressed block contains new values for
* the recent offsets queue, starting on the next 16-bit
* boundary in the bitstream. Careful: if the stream is
* *already* aligned, the correct thing to do is to throw away
* the next 16 bits (this is probably a mistake in the format).
*/
bitstream_ensure_bits(is, 1);
bitstream_align(is);
recent_offsets[0] = bitstream_read_u32(is);
recent_offsets[1] = bitstream_read_u32(is);
recent_offsets[2] = bitstream_read_u32(is);
@ -477,202 +328,218 @@ static int lzx_read_block_header(struct lzx_decompressor *d,
return 0;
}
/* Decompress a block of LZX-compressed data. */
static int lzx_decompress_block(const struct lzx_decompressor *d,
struct input_bitstream *is,
int block_type, u32 block_size,
u8 * const out_begin, u8 *out_next,
u32 recent_offsets[])
/* Decompress a block of LZX-compressed data. */
static int
lzx_decompress_block(struct lzx_decompressor *d, struct input_bitstream *is,
int block_type, u32 block_size,
u8 * const out_begin, u8 *out_next, u32 recent_offsets[])
{
u8 * const block_end = out_next + block_size;
unsigned ones_if_aligned = 0U - (block_type == LZX_BLOCKTYPE_ALIGNED);
unsigned min_aligned_offset_slot;
/*
* Build the Huffman decode tables. We always need to build the main
* and length decode tables. For aligned blocks we additionally need to
* build the aligned offset decode table.
*/
if (make_huffman_decode_table(d->maincode_decode_table,
d->num_main_syms,
LZX_MAINCODE_TABLEBITS,
d->maincode_lens,
LZX_MAX_MAIN_CODEWORD_LEN,
d->maincode_working_space))
return -1;
if (make_huffman_decode_table(d->lencode_decode_table,
LZX_LENCODE_NUM_SYMBOLS,
LZX_LENCODE_TABLEBITS,
d->lencode_lens,
LZX_MAX_LEN_CODEWORD_LEN,
d->lencode_working_space))
return -1;
if (block_type == LZX_BLOCKTYPE_ALIGNED) {
if (make_huffman_decode_table(d->alignedcode_decode_table,
LZX_ALIGNEDCODE_NUM_SYMBOLS,
LZX_ALIGNEDCODE_TABLEBITS,
d->alignedcode_lens,
LZX_MAX_ALIGNED_CODEWORD_LEN,
d->alignedcode_working_space))
return -1;
min_aligned_offset_slot = LZX_MIN_ALIGNED_OFFSET_SLOT;
memcpy(d->extra_offset_bits, d->extra_offset_bits_minus_aligned,
sizeof(lzx_extra_offset_bits));
} else {
min_aligned_offset_slot = LZX_MAX_OFFSET_SLOTS;
memcpy(d->extra_offset_bits, lzx_extra_offset_bits,
sizeof(lzx_extra_offset_bits));
}
/* Decode the literals and matches. */
do {
unsigned mainsym;
unsigned match_len;
u32 match_offset;
unsigned length;
u32 offset;
unsigned offset_slot;
unsigned num_extra_bits;
mainsym = read_mainsym(d, is);
if (mainsym < LZX_NUM_CHARS) {
/* Literal */
/* Literal */
*out_next++ = mainsym;
continue;
}
/* Match */
/* Match */
/* Decode the length header and offset slot. */
mainsym -= LZX_NUM_CHARS;
match_len = mainsym % LZX_NUM_LEN_HEADERS;
offset_slot = mainsym / LZX_NUM_LEN_HEADERS;
STATIC_ASSERT(LZX_NUM_CHARS % LZX_NUM_LEN_HEADERS == 0);
length = mainsym % LZX_NUM_LEN_HEADERS;
offset_slot = (mainsym - LZX_NUM_CHARS) / LZX_NUM_LEN_HEADERS;
/* If needed, read a length symbol to decode the full length. */
if (match_len == LZX_NUM_PRIMARY_LENS)
match_len += read_lensym(d, is);
match_len += LZX_MIN_MATCH_LEN;
if (length == LZX_NUM_PRIMARY_LENS)
length += read_lensym(d, is);
length += LZX_MIN_MATCH_LEN;
if (offset_slot < LZX_NUM_RECENT_OFFSETS) {
/* Repeat offset */
/* Note: This isn't a real LRU queue, since using the R2
* offset doesn't bump the R1 offset down to R2. This
* quirk allows all 3 recent offsets to be handled by
* the same code. (For R0, the swap is a no-op.) */
match_offset = recent_offsets[offset_slot];
* offset doesn't bump the R1 offset down to R2. */
offset = recent_offsets[offset_slot];
recent_offsets[offset_slot] = recent_offsets[0];
recent_offsets[0] = match_offset;
} else {
/* Explicit offset */
/* Look up the number of extra bits that need to be read
* to decode offsets with this offset slot. */
num_extra_bits = lzx_extra_offset_bits[offset_slot];
/* Start with the offset slot base value. */
match_offset = lzx_offset_slot_base[offset_slot];
/* In aligned offset blocks, the low-order 3 bits of
* each offset are encoded using the aligned offset
* code. Otherwise, all the extra bits are literal. */
if ((num_extra_bits & ones_if_aligned) >= LZX_NUM_ALIGNED_OFFSET_BITS) {
match_offset +=
bitstream_read_bits(is, num_extra_bits -
LZX_NUM_ALIGNED_OFFSET_BITS)
<< LZX_NUM_ALIGNED_OFFSET_BITS;
match_offset += read_alignedsym(d, is);
} else {
match_offset += bitstream_read_bits(is, num_extra_bits);
offset = bitstream_read_bits(is, d->extra_offset_bits[offset_slot]);
if (offset_slot >= min_aligned_offset_slot) {
offset = (offset << LZX_NUM_ALIGNED_OFFSET_BITS) |
read_alignedsym(d, is);
}
offset += lzx_offset_slot_base[offset_slot];
/* Adjust the offset. */
match_offset -= (LZX_NUM_RECENT_OFFSETS - 1);
/* Update the recent offsets. */
/* Update the match offset LRU queue. */
STATIC_ASSERT(LZX_NUM_RECENT_OFFSETS == 3);
recent_offsets[2] = recent_offsets[1];
recent_offsets[1] = recent_offsets[0];
recent_offsets[0] = match_offset;
}
recent_offsets[0] = offset;
/* Validate the match, then copy it to the current position. */
if (match_len > (size_t)(block_end - out_next))
/* Validate the match and copy it to the current position. */
if (unlikely(lz_copy(length, offset, out_begin,
out_next, block_end, LZX_MIN_MATCH_LEN)))
return -1;
if (match_offset > (size_t)(out_next - out_begin))
return -1;
out_next = lz_copy(out_next, match_len, match_offset,
block_end, LZX_MIN_MATCH_LEN);
out_next += length;
} while (out_next != block_end);
return 0;
}
/*
* lzx_allocate_decompressor - Allocate an LZX decompressor
*
* Return the pointer to the decompressor on success, or return NULL and set
* errno on failure.
*/
struct lzx_decompressor *lzx_allocate_decompressor(void)
int
lzx_decompress(struct lzx_decompressor *restrict d,
const void *restrict compressed_data, size_t compressed_size,
void *restrict uncompressed_data, size_t uncompressed_size)
{
return ntfs_malloc(sizeof(struct lzx_decompressor));
}
/*
* lzx_decompress - Decompress a buffer of LZX-compressed data
*
* @decompressor: A decompressor allocated with lzx_allocate_decompressor()
* @compressed_data: The buffer of data to decompress
* @compressed_size: Number of bytes of compressed data
* @uncompressed_data: The buffer in which to store the decompressed data
* @uncompressed_size: The number of bytes the data decompresses into
*
* Return 0 on success, or return -1 and set errno on failure.
*/
int lzx_decompress(struct lzx_decompressor *decompressor,
const void *compressed_data, size_t compressed_size,
void *uncompressed_data, size_t uncompressed_size)
{
struct lzx_decompressor *d = decompressor;
u8 * const out_begin = uncompressed_data;
u8 *out_next = out_begin;
u8 * const out_end = out_begin + uncompressed_size;
struct input_bitstream is;
STATIC_ASSERT(LZX_NUM_RECENT_OFFSETS == 3);
u32 recent_offsets[LZX_NUM_RECENT_OFFSETS] = {1, 1, 1};
int e8_status = 0;
unsigned may_have_e8_byte = 0;
init_input_bitstream(&is, compressed_data, compressed_size);
/* Codeword lengths begin as all 0's for delta encoding purposes. */
memset(d->maincode_lens, 0, LZX_MAINCODE_NUM_SYMBOLS);
/* Codeword lengths begin as all 0's for delta encoding purposes. */
memset(d->maincode_lens, 0, d->num_main_syms);
memset(d->lencode_lens, 0, LZX_LENCODE_NUM_SYMBOLS);
/* Decompress blocks until we have all the uncompressed data. */
/* Decompress blocks until we have all the uncompressed data. */
while (out_next != out_end) {
int block_type;
u32 block_size;
if (lzx_read_block_header(d, &is, &block_type, &block_size,
recent_offsets))
goto invalid;
if (lzx_read_block_header(d, &is, recent_offsets,
&block_type, &block_size))
return -1;
if (block_size < 1 || block_size > (size_t)(out_end - out_next))
goto invalid;
if (block_size < 1 || block_size > out_end - out_next)
return -1;
if (block_type != LZX_BLOCKTYPE_UNCOMPRESSED) {
if (likely(block_type != LZX_BLOCKTYPE_UNCOMPRESSED)) {
/* Compressed block */
if (lzx_decompress_block(d,
&is,
block_type,
block_size,
out_begin,
out_next,
/* Compressed block */
if (lzx_decompress_block(d, &is, block_type, block_size,
out_begin, out_next,
recent_offsets))
goto invalid;
return -1;
e8_status |= d->maincode_lens[0xe8];
out_next += block_size;
/* If the first E8 byte was in this block, then it must
* have been encoded as a literal using mainsym E8. */
may_have_e8_byte |= d->maincode_lens[0xE8];
} else {
/* Uncompressed block */
out_next = bitstream_read_bytes(&is, out_next,
block_size);
if (!out_next)
goto invalid;
/* Uncompressed block */
if (bitstream_read_bytes(&is, out_next, block_size))
return -1;
/* Re-align the bitstream if needed. */
if (block_size & 1)
bitstream_read_byte(&is);
e8_status = 1;
/* There may have been an E8 byte in the block. */
may_have_e8_byte = 1;
}
out_next += block_size;
}
/* Postprocess the data unless it cannot possibly contain 0xe8 bytes. */
if (e8_status)
/* Postprocess the data unless it cannot possibly contain E8 bytes. */
if (may_have_e8_byte)
lzx_postprocess(uncompressed_data, uncompressed_size);
return 0;
invalid:
errno = EINVAL;
return -1;
}
/*
* lzx_free_decompressor - Free an LZX decompressor
*
* @decompressor: A decompressor that was allocated with
* lzx_allocate_decompressor(), or NULL.
*/
void lzx_free_decompressor(struct lzx_decompressor *decompressor)
struct lzx_decompressor *
lzx_allocate_decompressor(size_t max_block_size)
{
free(decompressor);
unsigned window_order;
struct lzx_decompressor *d;
window_order = lzx_get_window_order(max_block_size);
if (window_order == 0) {
errno = EINVAL;
return NULL;
}
d = aligned_malloc(sizeof(*d), DECODE_TABLE_ALIGNMENT);
if (!d)
return NULL;
d->window_order = window_order;
d->num_main_syms = lzx_get_num_main_syms(window_order);
/* Initialize 'd->extra_offset_bits_minus_aligned'. */
STATIC_ASSERT(sizeof(d->extra_offset_bits_minus_aligned) ==
sizeof(lzx_extra_offset_bits));
STATIC_ASSERT(sizeof(d->extra_offset_bits) ==
sizeof(lzx_extra_offset_bits));
memcpy(d->extra_offset_bits_minus_aligned, lzx_extra_offset_bits,
sizeof(lzx_extra_offset_bits));
for (unsigned offset_slot = LZX_MIN_ALIGNED_OFFSET_SLOT;
offset_slot < LZX_MAX_OFFSET_SLOTS; offset_slot++)
{
d->extra_offset_bits_minus_aligned[offset_slot] -=
LZX_NUM_ALIGNED_OFFSET_BITS;
}
return d;
}
void
lzx_free_decompressor(struct lzx_decompressor *d)
{
aligned_free(d);
}

View File

@ -211,7 +211,7 @@ struct ntfs_system_decompression_ctx {
static int allocate_decompressor(struct ntfs_system_decompression_ctx *ctx)
{
if (ctx->format == FORMAT_LZX)
ctx->decompressor = lzx_allocate_decompressor();
ctx->decompressor = lzx_allocate_decompressor(32768);
else
ctx->decompressor = xpress_allocate_decompressor();
if (!ctx->decompressor)
@ -590,8 +590,13 @@ static int read_and_decompress_chunk(struct ntfs_system_decompression_ctx *ctx,
return 0;
/* The chunk was stored compressed. Decompress its data. */
return decompress(ctx, read_buffer, stored_size,
buffer, uncompressed_size);
if (decompress(ctx, read_buffer, stored_size,
buffer, uncompressed_size)) {
errno = EINVAL;
return -1;
}
return 0;
}
/* Retrieve a pointer to the uncompressed data of the specified chunk. On

View File

@ -60,7 +60,8 @@ extern void xpress_free_decompressor(struct xpress_decompressor *decompressor);
struct lzx_decompressor;
extern struct lzx_decompressor *lzx_allocate_decompressor(void);
extern struct lzx_decompressor *
lzx_allocate_decompressor(size_t max_block_size);
extern int lzx_decompress(struct lzx_decompressor *decompressor,
const void *compressed_data, size_t compressed_size,

View File

@ -0,0 +1,22 @@
/*
* xpress_constants.h
*
* Constants for the XPRESS compression format.
*/
#ifndef _XPRESS_CONSTANTS_H
#define _XPRESS_CONSTANTS_H
#define XPRESS_NUM_CHARS 256
#define XPRESS_NUM_SYMBOLS 512
#define XPRESS_MAX_CODEWORD_LEN 15
#define XPRESS_END_OF_DATA 256
#define XPRESS_MIN_OFFSET 1
#define XPRESS_MAX_OFFSET 65535
#define XPRESS_MIN_MATCH_LEN 3
#define XPRESS_MAX_MATCH_LEN 65538
#endif /* _XPRESS_CONSTANTS_H */

View File

@ -1,9 +1,12 @@
/*
* xpress_decompress.c - A decompressor for the XPRESS compression format
* (Huffman variant), which can be used in "System Compressed" files. This is
* based on the code from wimlib.
* xpress_decompress.c
*
* Copyright (C) 2015 Eric Biggers
* A decompressor for the XPRESS compression format (Huffman variant).
*/
/*
*
* Copyright (C) 2012-2016 Eric Biggers
*
* This program is free software: you can redistribute it and/or modify it under
* the terms of the GNU General Public License as published by the Free Software
@ -19,80 +22,85 @@
* this program. If not, see <http://www.gnu.org/licenses/>.
*/
/*
* The XPRESS compression format is an LZ77 and Huffman-code based algorithm.
* That means it is fairly similar to LZX compression, but XPRESS is simpler, so
* it is a little faster to compress and decompress.
*
* The XPRESS compression format is mostly documented in a file called "[MS-XCA]
* Xpress Compression Algorithm". In the MSDN library, it can currently be
* found under Open Specifications => Protocols => Windows Protocols => Windows
* Server Protocols => [MS-XCA] Xpress Compression Algorithm". The format in
* WIMs is specifically the algorithm labeled as the "LZ77+Huffman Algorithm"
* (there apparently are some other versions of XPRESS as well).
*
* If you are already familiar with the LZ77 algorithm and Huffman coding, the
* XPRESS format is fairly simple. The compressed data begins with 256 bytes
* that contain 512 4-bit integers that are the lengths of the symbols in the
* Huffman code used for match/literal headers. In contrast with more
* complicated formats such as DEFLATE and LZX, this is the only Huffman code
* that is used for the entirety of the XPRESS compressed data, and the codeword
* lengths are not encoded with a pretree.
*
* The rest of the compressed data is Huffman-encoded symbols. Values 0 through
* 255 represent the corresponding literal bytes. Values 256 through 511
* represent matches and may require extra bits or bytes to be read to get the
* match offset and match length.
*
* The trickiest part is probably the way in which literal bytes for match
* lengths are interleaved in the bitstream.
*
* Also, a caveat--- according to Microsoft's documentation for XPRESS,
*
* "Some implementation of the decompression algorithm expect an extra
* symbol to mark the end of the data. Specifically, some implementations
* fail during decompression if the Huffman symbol 256 is not found after
* the actual data."
*
* This is the case with Microsoft's implementation in WIMGAPI, for example. So
* although our implementation doesn't currently check for this extra symbol,
* compressors would be wise to add it.
*/
#ifdef HAVE_CONFIG_H
#include "config.h"
# include "config.h"
#endif
#include <errno.h>
#include <stdlib.h>
#include <ntfs-3g/misc.h>
#include "decompress_common.h"
#include "system_compression.h"
#define XPRESS_NUM_SYMBOLS 512
#define XPRESS_MAX_CODEWORD_LEN 15
#define XPRESS_MIN_MATCH_LEN 3
#include "xpress_constants.h"
/* This value is chosen for fast decompression. */
#define XPRESS_TABLEBITS 12
#define XPRESS_TABLEBITS 11
/* Reusable heap-allocated memory for XPRESS decompression */
struct xpress_decompressor {
union {
DECODE_TABLE(decode_table, XPRESS_NUM_SYMBOLS,
XPRESS_TABLEBITS, XPRESS_MAX_CODEWORD_LEN);
u8 lens[XPRESS_NUM_SYMBOLS];
};
DECODE_TABLE_WORKING_SPACE(working_space, XPRESS_NUM_SYMBOLS,
XPRESS_MAX_CODEWORD_LEN);
} _aligned_attribute(DECODE_TABLE_ALIGNMENT);
/* The Huffman decoding table */
u16 decode_table[(1 << XPRESS_TABLEBITS) + 2 * XPRESS_NUM_SYMBOLS];
/* An array that maps symbols to codeword lengths */
u8 lens[XPRESS_NUM_SYMBOLS];
/* Temporary space for make_huffman_decode_table() */
u16 working_space[2 * (1 + XPRESS_MAX_CODEWORD_LEN) +
XPRESS_NUM_SYMBOLS];
};
/*
* xpress_allocate_decompressor - Allocate an XPRESS decompressor
*
* Return the pointer to the decompressor on success, or return NULL and set
* errno on failure.
*/
struct xpress_decompressor *xpress_allocate_decompressor(void)
int
xpress_decompress(struct xpress_decompressor *restrict d,
const void *restrict compressed_data, size_t compressed_size,
void *restrict uncompressed_data, size_t uncompressed_size)
{
return ntfs_malloc(sizeof(struct xpress_decompressor));
}
/*
* xpress_decompress - Decompress a buffer of XPRESS-compressed data
*
* @decompressor: A decompressor that was allocated with
* xpress_allocate_decompressor()
* @compressed_data: The buffer of data to decompress
* @compressed_size: Number of bytes of compressed data
* @uncompressed_data: The buffer in which to store the decompressed data
* @uncompressed_size: The number of bytes the data decompresses into
*
* Return 0 on success, or return -1 and set errno on failure.
*/
int xpress_decompress(struct xpress_decompressor *decompressor,
const void *compressed_data, size_t compressed_size,
void *uncompressed_data, size_t uncompressed_size)
{
struct xpress_decompressor *d = decompressor;
const u8 * const in_begin = compressed_data;
u8 * const out_begin = uncompressed_data;
u8 *out_next = out_begin;
u8 * const out_end = out_begin + uncompressed_size;
struct input_bitstream is;
unsigned i;
/* Read the Huffman codeword lengths. */
if (compressed_size < XPRESS_NUM_SYMBOLS / 2)
goto invalid;
for (i = 0; i < XPRESS_NUM_SYMBOLS / 2; i++) {
d->lens[i*2 + 0] = in_begin[i] & 0xF;
d->lens[i*2 + 1] = in_begin[i] >> 4;
return -1;
for (int i = 0; i < XPRESS_NUM_SYMBOLS / 2; i++) {
d->lens[2 * i + 0] = in_begin[i] & 0xf;
d->lens[2 * i + 1] = in_begin[i] >> 4;
}
/* Build a decoding table for the Huffman code. */
@ -100,7 +108,7 @@ int xpress_decompress(struct xpress_decompressor *decompressor,
XPRESS_TABLEBITS, d->lens,
XPRESS_MAX_CODEWORD_LEN,
d->working_space))
goto invalid;
return -1;
/* Decode the matches and literals. */
@ -115,7 +123,7 @@ int xpress_decompress(struct xpress_decompressor *decompressor,
sym = read_huffsym(&is, d->decode_table,
XPRESS_TABLEBITS, XPRESS_MAX_CODEWORD_LEN);
if (sym < 256) {
if (sym < XPRESS_NUM_CHARS) {
/* Literal */
*out_next++ = sym;
} else {
@ -135,30 +143,26 @@ int xpress_decompress(struct xpress_decompressor *decompressor,
}
length += XPRESS_MIN_MATCH_LEN;
if (offset > (size_t)(out_next - out_begin))
goto invalid;
if (unlikely(lz_copy(length, offset,
out_begin, out_next, out_end,
XPRESS_MIN_MATCH_LEN)))
return -1;
if (length > (size_t)(out_end - out_next))
goto invalid;
out_next = lz_copy(out_next, length, offset, out_end,
XPRESS_MIN_MATCH_LEN);
out_next += length;
}
}
return 0;
invalid:
errno = EINVAL;
return -1;
}
/*
* xpress_free_decompressor - Free an XPRESS decompressor
*
* @decompressor: A decompressor that was allocated with
* xpress_allocate_decompressor(), or NULL.
*/
void xpress_free_decompressor(struct xpress_decompressor *decompressor)
struct xpress_decompressor *
xpress_allocate_decompressor(void)
{
free(decompressor);
return aligned_malloc(sizeof(struct xpress_decompressor),
DECODE_TABLE_ALIGNMENT);
}
void
xpress_free_decompressor(struct xpress_decompressor *d)
{
aligned_free(d);
}