IPoIB has a link-layer broadcast address that varies according to the
partition key. We currently go through several contortions to pretend
that the link-layer address is a fixed constant; by making the
broadcast address a property of the network device rather than the
link-layer protocol it will be possible to simplify IPoIB's broadcast
handling.
pxe_init_structures() fills in the fields of the !PXE and PXENV+
structures that aren't known until gPXE starts up. Once gPXE is
started, these values will never change.
Make pxe_init_structures() an initialisation function so that PXE
users don't have to worry about calling it.
It is possible that the UNDI ISR may be triggered before netdev_tx()
returns control to pxenv_undi_transmit(). This means that
pxenv_undi_isr() may see a zero undi_tx_count, and so not check for TX
completions. This is not a significant problem, since it will check
for TX completions on the next call to pxenv_undi_isr() anyway; it
just means that the NBP will see a spurious IRQ that was apparently
caused by nothing.
Fix by updating the undi_tx_count before calling netdev_tx(), so that
pxenv_undi_isr() can decrement it and report the TX completion.
Symantec Ghost requires working multicast support. gPXE configures
all (sufficiently supported) network adapters into "receive all
multicasts" mode, which means that PXENV_UNDI_SET_MCAST_ADDRESS is
actually a no-op, but the current implementation returns
PXENV_STATUS_UNSUPPORTED instead.
Fix by making PXENV_UNDI_SET_MCAST_ADDRESS return success. For good
measure, also implement PXENV_UNDI_GET_MCAST_ADDRESS, since the
relevant functionality is now exposed by the net device core.
Note that this will silently fail if the gPXE driver for the NIC being
used fails to configure the NIC in "receive all multicasts" mode.
The PXE debugging messages have remained pretty much unaltered since
Etherboot 5.4, and are now difficult to read in comparison to most of
the rest of gPXE.
Bring the pxe_undi debug messages up to normal gPXE standards.
The Symantec UNDI DOS driver fails when run on top of gPXE because we
return our interface type as "gPXE" rather than one of the predefined
NDIS interface type strings.
Fix by returning the standard "DIX+802.3" string; this isn't
necessarily always accurate, but it's highly unlikely that anything
trying to use the UNDI API would understand our IPoIB link-layer
pseudo-header anyway.
The Intel DOS UNDI driver fails when run on top of gPXE because we do
not fill in the ServiceFlags field in PXENV_UNDI_GET_IFACE_INFO.
Fix by filling in the ServiceFlags field with reasonable values
indicating our approximate feature capabilities.
The 3Com DOS UNDI driver fails when run on top of gPXE for two
reasons: firstly because PXENV_UNDI_SET_PACKET_FILTER is unsupported,
and secondly because gPXE enters the NBP without enabling interrupts
on the NIC, and the 3Com driver never calls PXENV_UNDI_OPEN.
Fix by always returning success from PXENV_UNDI_SET_PACKET_FILTER
(which is no worse than the current situation, since we already ignore
the receive packet filter in PXENV_UNDI_OPEN), and by forcibly
enabling interrupts on the NIC within PXENV_UNDI_TRANSMIT. The latter
is something of a hack, but avoids the need to implement a complete
base-code ISR that we would otherwise need if we were to enter the NBP
with interrupts enabled.
In order to construct outgoing link-layer frames or parse incoming
ones properly, some protocols (such as 802.11) need more state than is
available in the existing variables passed to the link-layer protocol
handlers. To remedy this, add struct net_device *netdev as the first
argument to each of these functions, so that more information can be
fetched from the link layer-private part of the network device.
Updated all three call sites (netdevice.c, efi_snp.c, pxe_undi.c) and
both implementations (ethernet.c, ipoib.c) of ll_protocol to use the
new argument.
Signed-off-by: Michael Brown <mcb30@etherboot.org>
Using "lret $2" to return from an interrupt causes interrupts to be
disabled in the calling program, since the INT instruction will have
disabled interrupts. Instead, patch CF on the stack and use iret to
return.
Interestingly, the original PC BIOS had this bug in at least one
place.
Signed-off-by: H. Peter Anvin <hpa@zytor.com>
Signed-off-by: Michael Brown <mcb30@etherboot.org>
The PXE 1.x spec specifies that on NBP entry or on return from INT
1Ah AX=5650h, EDX shall point to the physical address of the PXENV+
structure. The PXE 2.x spec drops this requirement, simply stating
that EDX is clobbered. Given the principle "be conservative in what
you send, liberal in what you accept", however, we should implement
this anyway.
The DHCP client code now implements only the mechanism of the DHCP and
PXE Boot Server protocols. Boot Server Discovery can be initiated
manually using the "pxebs" command. The menuing code is separated out
into a user-level function on a par with boot_root_path(), and is
entered in preference to a normal filename boot if the DHCP vendor
class is "PXEClient" and the PXE boot menu option exists.
pxe_tftp.c assumes that the first seek on its data-transfer interface
represents the block size. Apart from being an ugly hack, this will
also screw up file size calculation for files smaller than one block.
The proper solution would be to extend the data-transfer interface to
support the reporting of stat()-like data. This is not going to
happen until the cost of adding interface methods is reduced (a fix I
have planned since June 2008).
In the meantime, abuse the xfer_window() method to return the block
size, since it is not being used for anything else and is vaguely
justifiable.
Astonishingly, having returned the incorrect TFTP blocksize via
PXENV_TFTP_OPEN for almost a year seems not to have affected any of
the test cases run during that time; this bug was found only when
someone tried running the heavily-patched version of pxegrub found in
OpenSolaris.
This brings us in to line with Linux definitions, and also simplifies
adding x86_64 support since both platforms have 2-byte shorts, 4-byte
ints and 8-byte long longs.
Reduce the number of sections within the linker script to match the
number of practical sections within the output file.
Define _section, _msection, _esection, _section_filesz, _section_memsz,
and _section_lma for each section, replacing the mixture of symbols that
previously existed.
In particular, replace _text and _end with _textdata and _etextdata, to
make it explicit within code that uses these symbols that the .text and
.data sections are always treated as a single contiguous block.
Wyse Streaming Manager server (WLDRM13.BIN) assumes that the PXENV+
entry point is at UNDI_CS:0000; apparently, somebody at Wyse has
difficulty distinguishing between the words "may" and "must"...
Add a dummy entry point at UNDI_CS:0000, which just jumps to the
correct entry point.
IBM's iSCSI Firmware Initiator checks the UNDIROMID pointer in the
!PXE structure that gets created by the UNDI loader. We didn't
previously fill this value in.
__from_data16 and __from_text16 now take a pointer to a
.data16/.text16 variable, and return the real-mode offset within the
appropriate segment. This matches the use case for every occurrence
of these macros, and prevents potential future bugs such as that fixed
in commit d51d80f. (The bug arose essentially because "&pointer" is
still syntactically valid.)
This allows pxelinux to execute arbitrary gPXE commands. This is
remarkably unsafe (not least because some of the commands will assume
full ownership of memory and do nasty things like edit the e820 map
underneath the calling pxelinux), but it does allow access to the
"sanboot" command.
defined in vsprintf.h. (This may change, since vsprintf.h is a
non-standard name, but for now it's the one to use.)
There should be no need to include vsprintf.h just for DBG() statements,
since include/compiler.h forces it in for a debug build anyway.
Updated PXE API dispatcher to use copy_{to,from}_user, and moved to
arch/i386 since the implementation is quite architecture-dependent.
(The individual PXE API calls can be largely
architecture-independent.)