The UEFI shim implements a fairly nicely designed revocation mechanism
designed around the concept of security generations. Unfortunately
nobody in the shim community has thus far added the relevant metadata
to the Linux kernel, with the result that current versions of shim are
incapable of booting current versions of the Linux kernel.
Experience shows that there is unfortunately no point in trying to get
a fix for this upstreamed into shim. We therefore default to working
around this undesirable behaviour by patching data read from the
"SbatLevel" variable used to hold SBAT configuration.
Signed-off-by: Michael Brown <mcb30@ipxe.org>
Add support for using a shim as a helper to execute an EFI image.
When a shim has been specified via shim(), the shim image will be
passed to LoadImage() instead of the selected EFI image and the
command line will be prepended with the name of the selected EFI
image. The selected EFI image will be accessible to the shim via the
virtual filesystem as a hidden file.
Reduce the Secure Boot attack surface by removing, where possible, the
spurious requirement for a third party second stage loader binary such
as GRUB to be used solely in order to call the "shim lock protocol"
entry point.
Do not install the EFI PXE APIs when using a shim, since if shim finds
EFI_PXE_BASE_CODE_PROTOCOL on the loaded image's device handle then it
will attempt to download files afresh instead of using the files
already downloaded by iPXE and exposed via the EFI_SIMPLE_FILE_SYSTEM
protocol. (Experience shows that there is no point in trying to get a
fix for this upstreamed into shim.)
Signed-off-by: Michael Brown <mcb30@ipxe.org>
The UEFI shim includes a "shim lock protocol" that can be used by a
third party second stage loader such as GRUB to verify a kernel image.
Add definitions for the relevant portions of this protocol interface.
Signed-off-by: Michael Brown <mcb30@ipxe.org>
Most image flags are independent values: any combination of flags may
be set for any image, and the flags for one image are independent of
the flags for any other image. The "selected" flag does not follow
this pattern: at most one image may be marked as selected at any time.
When invoking a kernel via the UEFI shim, there will be multiple
"special" images: the selected kernel itself, the shim image, and
potentially a shim-signed GRUB binary to be used as a crutch to assist
shim in loading the kernel (since current versions of the UEFI shim
are not capable of directly loading a Linux kernel).
Remove the "selected" image flag and replace it with a general concept
of an image tag with the same semantics: a given tag may be assigned
to at most one image, an image may be found by its tag only while the
image is currently registered, and a tag will survive unregistration
and reregistration of an image (if it has not already been assigned to
a new image). For visual consistency, also replace the current image
pointer with a current image tag.
The image pointer stored within the image tag holds only a weak
reference to the image, since the selection of an image should not
prevent that image from being freed. (The strong reference to the
currently executing image is held locally within the execution scope
of image_exec(), and is logically separate from the current image
pointer.)
Signed-off-by: Michael Brown <mcb30@ipxe.org>
Versions 15.4 and earlier of the UEFI shim are incapable of correctly
parsing the command line in order to extract the second stage loader
filename, and will always attempt to load "grubx64.efi" or equivalent.
Versions 15.3 and later of the UEFI shim are currently incapable of
loading a Linux kernel directly anyway, since the kernel does not
include SBAT metadata. These versions will require a genuine
shim-signed GRUB binary to be used as a crutch to assist shim in
loading a Linux kernel.
This leaves versions 15.2 and earlier of the UEFI shim (as currently
used in e.g. RHEL7) as being capable of directly loading a Linux
kernel, but incorrectly attempting to load it using the filename
"grubx64.efi" or equivalent. To support the bugs in these older
versions of the UEFI shim, allow the currently selected image to be
opened via any filename of the form "grub*.efi".
Signed-off-by: Michael Brown <mcb30@ipxe.org>
When invoking a kernel via the UEFI shim, the kernel (and potentially
also a helper binary such as GRUB) must be accessible via the virtual
filesystem exposed via EFI_SIMPLE_FILE_SYSTEM_PROTOCOL but must not be
present in the magic initrd constructed from all registered images.
Allow for images to be flagged as hidden, which will cause them to be
excluded from API-level lists of all images such as the virtual
filesystem directory contents, the magic initrd, or the Multiboot
module list. Hidden images remain visible to iPXE commands including
"imgstat", which will show a "[HIDDEN]" flag for such images.
Signed-off-by: Michael Brown <mcb30@ipxe.org>
Show the original filename as used by the consumer when calling our
EFI_SIMPLE_FILE_SYSTEM_PROTOCOL's Open() method.
Signed-off-by: Michael Brown <mcb30@ipxe.org>
Try searching for a matching registered image before checking for
fixed filenames (such as "initrd.magic" for the dynamically generated
magic initrd file). This minimises surprise by ensuring that an
explicitly downloaded image will always be used verbatim.
Signed-off-by: Michael Brown <mcb30@ipxe.org>
As documented in commits 6a004be ("[efi] Support the initrd
autodetection mechanism in newer Linux kernels") and 04e60a2 ("[efi]
Omit EFI_LOAD_FILE2_PROTOCOL for a zero-length initrd"), the choice in
Linux of using a fixed device path requires bootloaders to allow for
the fact that a previous bootloader may have already installed a
handle with the fixed device path.
We currently deal with this situation by reusing the existing handle,
replacing the EFI_LOAD_FILE2_PROTOCOL instance with our own. Simplify
the code by instead uninstalling the EFI_DEVICE_PATH_PROTOCOL instance
from the existing handle (if present), thereby allowing the creation
of a new handle to succeed.
Create the new handle only if we have a non-empty initrd to provide.
This works around bugs in bootloaders such as the systemd EFI stub
that fail to allow for the existence of multiple-bootloader chains.
(The workaround is not comprehensive: if the user has downloaded other
images in iPXE before invoking the systemd Unified Kernel Image (UKI),
then the systemd EFI stub will still crash and burn since it fails to
allow for the fact that a previous bootloader has already installed a
handle with the fixed device path.)
Signed-off-by: Michael Brown <mcb30@ipxe.org>
We unregister script images during their execution, to prevent a
"boot" command from re-executing the containing script. This also has
the side effect of preventing executing scripts from showing up within
the Linux magic initrd image (or the Multiboot module list).
Additional logic in bzimage.c and efi_file.c prevents a currently
executing kernel from showing up within the magic initrd image.
Similar logic in multiboot.c prevents the Multiboot kernel from
showing up as a Multiboot module.
This still leaves some corner cases that are not covered correctly.
For example: when using a gzip-compressed kernel image, nothing will
currently hide the original compressed image from the magic initrd.
Fix by moving the logic that temporarily unregisters the current image
from script_exec() to image_exec(), so that it applies to all image
types, and simplify the magic initrd and Multiboot module list
construction logic on the basis that no further filtering of the
registered image list is necessary.
This change has the side effect of hiding currently executing EFI
images from the virtual filesystem exposed by iPXE. For example, when
using iPXE to boot wimboot, the wimboot binary itself will no longer
be visible within the virtual filesystem.
Signed-off-by: Michael Brown <mcb30@ipxe.org>
When the Linux kernel is being used with no initrd, iPXE will still
provide a zero-length initrd.magic file within the virtual filesystem.
As of commit 6a004be ("[efi] Support the initrd autodetection
mechanism in newer Linux kernels"), this zero-length file will also be
exposed via an EFI_LOAD_FILE2_PROTOCOL instance on a handle with a
fixed device path.
The correct handling of zero-length files via EFI_LOAD_FILE2_PROTOCOL
is unfortunately not well defined.
Linux expects the first call to LoadFile() to always fail with
EFI_BUFFER_TOO_SMALL. When the initrd is genuinely zero-length, iPXE
will return success since the buffer is not too small to hold the
(zero-length) file. This causes Linux to immediately report a
spurious EFI_LOAD_ERROR boot failure.
We could change the logic in iPXE's efi_file_load() to always return
EFI_BUFFER_TOO_SMALL if Buffer is NULL on entry. Since the correct
behaviour of LoadFile() in the corner case of a zero-length file is
left undefined by the UEFI specification, this would be permissible.
Unfortunately this approach would not fix the problem. If we return
EFI_BUFFER_TOO_SMALL and set the file length to zero, then Linux will
call the boot services AllocatePages() method with a zero length. In
at least the EDK2 implementation, this combination of parameters will
cause AllocatePages() to return EFI_OUT_OF_RESOURCES, and Linux will
again report a boot failure.
Another approach would be to install the initrd device path handle
only if we have a non-empty initrd to offer. Unfortunately this would
lead to a failure in yet another corner case: if a previous bootloader
has installed an initrd device path handle (e.g. to pass a boot script
to iPXE) then we must not leave that initrd in place, since then our
loaded kernel would end up seeing the wrong initrd content.
The cleanest fix seems to be to ensure that the initrd device path
handle is installed with the EFI_DEVICE_PATH_PROTOCOL instance present
but with the EFI_LOAD_FILE2_PROTOCOL instance absent (and forcibly
uninstalled if necessary), matching the state in which we leave the
handle after uninstalling our virtual filesystem. Linux will then not
find any handle that supports EFI_LOAD_FILE2_PROTOCOL within the fixed
device path, and so will fall through to trying other mechanisms to
locate the initrd.
Reported-by: Chris Bradshaw <cwbshaw@gmail.com>
Signed-off-by: Michael Brown <mcb30@ipxe.org>
Commit 7ca801d ("[efi] Use the EFI_RNG_PROTOCOL as an entropy source
if available") added EFI_RNG_PROTOCOL as an alternative entropy source
via an ad-hoc mechanism specific to efi_entropy.c.
Split out EFI_RNG_PROTOCOL to a separate entropy source, and allow the
entropy core to handle the selection of RDRAND, EFI_RNG_PROTOCOL, or
timer ticks as the active source.
The fault detection logic added in commit a87537d ("[efi] Detect and
disable seriously broken EFI_RNG_PROTOCOL implementations") may be
removed completely, since the failure will already be detected by the
generic ANS X9.82-mandated repetition count test and will now be
handled gracefully by the entropy core.
Signed-off-by: Michael Brown <mcb30@ipxe.org>
As noted in commit 3c83843 ("[rng] Check for several functioning RTC
interrupts"), experimentation shows that Hyper-V cannot be trusted to
reliably generate RTC interrupts. (As noted in commit f3ba0fb
("[hyperv] Provide timer based on the 10MHz time reference count
MSR"), Hyper-V appears to suffer from a general problem in reliably
generating any legacy interrupts.) An alternative entropy source is
therefore required for an image that may be used in a Hyper-V Gen1
virtual machine.
The x86 RDRAND instruction provides a suitable alternative entropy
source, but may not be supported by all CPUs. We must therefore allow
for multiple entropy sources to be compiled in, with the single active
entropy source selected only at runtime.
Restructure the internal entropy API to allow a working entropy source
to be detected and chosen at runtime.
Enable the RDRAND entropy source for all x86 builds, since it is
likely to be substantially faster than any other source.
Signed-off-by: Michael Brown <mcb30@ipxe.org>
Linux 5.7 added the ability to autodetect an initrd by searching for a
handle via a fixed vendor-specific "Linux initrd device path" and then
locating and using the EFI_LOAD_FILE2_PROTOCOL instance on that
handle.
This maps quite naturally onto our existing concept of a "magic
initrd" as introduced for EFI in commit e5f0255 ("[efi] Provide an
"initrd.magic" file for use by UEFI kernels").
Add an EFI_LOAD_FILE2_PROTOCOL instance to our EFI virtual files
(backed by simply calling the existing EFI_SIMPLE_FILE_SYSTEM_PROTOCOL
method to read from the file), and install the protocol instance for
the "initrd.magic" virtual file onto a new device handle that also
provides the Linux initrd device path.
The design choice in Linux of using a single fixed device path makes
this unfortunately messy to support, since device paths must be unique
within a system. When multiple bootloaders are used (e.g. GRUB
loading iPXE loading Linux) then only one bootloader can ever install
the device path onto a handle. Subsequent bootloaders must locate the
existing handle and replace the load file protocol instance with their
own.
Signed-off-by: Michael Brown <mcb30@ipxe.org>
Show the requested range when a caller reads from a virtual file via
the EFI_SIMPLE_FILE_SYSTEM_PROTOCOL interface.
Signed-off-by: Michael Brown <mcb30@ipxe.org>
The "bridge" driver introduced in 3aa6b79 ("[pci] Add minimal PCI
bridge driver") is required only for BIOS builds using the ENA driver,
where experimentation shows that we cannot rely on the BIOS to fully
assign MMIO addresses.
Since the driver is a valid PCI driver, it will end up binding to all
PCI bridge devices even on a UEFI platform, where the firmware is
likely to have completed MMIO address assignment correctly. This has
no impact on most systems since there is generally no UEFI driver for
PCI bridges: the enumeration of the whole PCI bus is handled by the
PciBusDxe driver bound to the root bridge.
Experimentation shows that at least one laptop will freeze at the
point that iPXE attempts to bind to the bridge device. No deeper
investigation has been carried out to find the root cause.
Fix by causing efipci_supported() to return an error unless the
configuration space header type indicates a non-bridge device.
Reported-by: Marcel Petersen <mp@sbe.de>
Signed-off-by: Michael Brown <mcb30@ipxe.org>
Try loading the autoexec.ipxe script first from the directory
containing the iPXE binary (based on the relative file path provided
to us via EFI_LOADED_IMAGE_PROTOCOL), then fall back to trying the
root directory.
Signed-off-by: Michael Brown <mcb30@ipxe.org>
Treat a command line passed to iPXE via UEFI LoadOptions as an image
to be registered at startup, as is already done for the .lkrn, .pxe,
and .exe BIOS images.
Originally-implemented-by: Ladi Prosek <lprosek@redhat.com>
Signed-off-by: Michael Brown <mcb30@ipxe.org>
Extend the functionality of efi_locate_device() to allow callers to
find instances of the protocol that may exist further up the device
path.
Signed-off-by: Michael Brown <mcb30@ipxe.org>
When chainloading iPXE from an EFI VLAN device, configure the
corresponding iPXE VLAN device to be created automatically.
Signed-off-by: Michael Brown <mcb30@ipxe.org>
When chainloading iPXE from a VLAN device, the MAC address of the
loaded image's device handle will match the MAC address of the trunk
device created by iPXE, and the autoboot process will then erroneously
consider the trunk device to be an autoboot device.
Fix by recording the VLAN tag along with the MAC address, and treating
the VLAN tag as part of the filter used to match the MAC address
against candidate network devices.
Signed-off-by: Michael Brown <mcb30@ipxe.org>
The network device index currently serves two purposes: acting as a
sequential index for network device names ("net0", "net1", etc), and
acting as an opaque unique integer identifier used in socket address
scope IDs.
There is no particular need for these usages to be linked, and it can
lead to situations in which devices are named unexpectedly. For
example: if a system has two network devices "net0" and "net1", a VLAN
is created as "net1-42", and then a USB NIC is connected, then the USB
NIC will be named "net3" rather than the expected "net2" since the
VLAN device "net1-42" will have consumed an index.
Separate the usages: rename the "index" field to "scope_id" (matching
its one and only use case), and assign the name without reference to
the scope ID by finding the first unused name. For consistency,
assign the scope ID by similarly finding the first unused scope ID.
Signed-off-by: Michael Brown <mcb30@ipxe.org>
When chainloading iPXE from a VLAN device, the MAC address within the
cached DHCPACK will match the MAC address of the trunk device created
by iPXE, and the cached DHCPACK will then end up being erroneously
applied to the trunk device. This tends to break outbound IPv4
routing, since both the trunk and VLAN devices will have the same
assigned IPv4 address.
Fix by recording the VLAN tag along with the cached DHCPACK, and
treating the VLAN tag as part of the filter used to match the cached
DHCPACK against candidate network devices.
Signed-off-by: Michael Brown <mcb30@ipxe.org>
EFI provides no API for determining the VLAN tag (if any) for a
specified device handle. There is the EFI_VLAN_CONFIG_PROTOCOL, but
that exists only on the trunk device handle (not on the VLAN device
handle), and provides no way to match VLAN tags against the trunk
device's child device handles.
The EDK2 codebase seems to rely solely on the device path to determine
the VLAN tag for a specified device handle: both NetLibGetVlanId() and
BmGetNetworkDescription() will parse the device path to search for a
VLAN_DEVICE_PATH component.
Add efi_path_vlan() which uses the same device path parsing logic to
determine the VLAN tag.
Signed-off-by: Michael Brown <mcb30@ipxe.org>
Provide a single central implementation of the logic for stepping
through elements of an EFI device path.
Signed-off-by: Michael Brown <mcb30@ipxe.org>
UEFI implements VLAN support within the Managed Network Protocol (MNP)
driver, which may create child VLAN devices automatically based on
stored UEFI variables. These child devices do not themselves provide
a raw-packet interface via EFI_SIMPLE_NETWORK_PROTOCOL, and may be
consumed only via the EFI_MANAGED_NETWORK_PROTOCOL interface.
The device paths constructed for these child devices may conflict with
those for the EFI_SIMPLE_NETWORK_PROTOCOL instances that iPXE attempts
to install for its own VLAN devices. The upshot is that creating an
iPXE VLAN device (e.g. via the "vcreate" command) will fail if the
UEFI Managed Network Protocol has already created a device for the
same VLAN tag.
Fix by providing our own EFI_VLAN_CONFIG_PROTOCOL instance on the same
device handle as EFI_SIMPLE_NETWORK_PROTOCOL. This causes the MNP
driver to treat iPXE's device as supporting hardware VLAN offload, and
it will therefore not attempt to install its own instance of the
protocol.
Signed-off-by: Michael Brown <mcb30@ipxe.org>
The DMA mapping is performed implicitly as part of the call to
dma_alloc(). The current implementation creates the IOMMU mapping for
the allocated and potentially uninitialised data before returning to
the caller (which will immediately zero out or otherwise initialise
the buffer). This leaves a small window within which a malicious PCI
device could potentially attempt to retrieve firmware-owned secrets
present in the uninitialised buffer. (Note that the hypothetically
malicious PCI device has no viable way to know the address of the
buffer from which to attempt a DMA read, rendering the attack
extremely implausible.)
Guard against any such hypothetical attacks by zeroing out the
allocated buffer prior to creating the coherent DMA mapping.
Suggested-by: Mateusz Siwiec <Mateusz.Siwiec@ioactive.com>
Signed-off-by: Michael Brown <mcb30@ipxe.org>
Allow pci_find_next() to discover devices beyond the first PCI
segment, by generalising pci_num_bus() (which implicitly assumes that
there is only a single PCI segment) with pci_discover() (which has the
ability to return an arbitrary contiguous chunk of PCI bus:dev.fn
address space).
Signed-off-by: Michael Brown <mcb30@ipxe.org>
Extend the glyph cache to include a number of dynamic entries that are
populated on demand whenever a non-ASCII character needs to be drawn.
Signed-off-by: Michael Brown <mcb30@ipxe.org>
Accumulate UTF-8 characters in fbcon_putchar(), and require the frame
buffer console's .glyph() method to accept Unicode character values.
Signed-off-by: Michael Brown <mcb30@ipxe.org>
Several keyboard layouts define ASCII characters as accessible only
via the AltGr modifier. Add support for this modifier to ensure that
all ASCII characters are accessible.
Experiments suggest that the BIOS console is likely to fail to
generate ASCII characters when the AltGr key is pressed. Work around
this limitation by accepting LShift+RShift (which will definitely
produce an ASCII character) as a synonym for AltGr.
Signed-off-by: Michael Brown <mcb30@ipxe.org>
Handle Ctrl and CapsLock key modifiers within key_remap(), to provide
consistent behaviour across different console types.
Signed-off-by: Michael Brown <mcb30@ipxe.org>
Attempt to fetch the autoexec.ipxe script via TFTP using the PXE base
code protocol installed on the loaded image's device handle, if
present.
This provides a generic alternative to the use of an embedded script
for chainloaded binaries, which is particularly useful in a UEFI
Secure Boot environment since it allows the script to be modified
without the need to sign a new binary.
As a side effect, this also provides a third method for breaking the
PXE chainloading loop (as an alternative to requiring an embedded
script or custom DHCP server configuration).
Signed-off-by: Michael Brown <mcb30@ipxe.org>
The RFC4122 specification defines UUIDs as being in network byte
order, but an unfortunately significant amount of (mostly Microsoft)
software treats them as having the first three fields in little-endian
byte order.
In an ideal world, any server-side software that compares UUIDs for
equality would perform an endian-insensitive comparison (analogous to
comparing strings for equality using a case-insensitive comparison),
and would therefore not care about byte order differences.
Define a setting type name ":guid" to allow a UUID setting to be
formatted in little-endian order, to simplify interoperability with
server-side software that expects such a formatting.
Signed-off-by: Michael Brown <mcb30@ipxe.org>
The UEFI specification mandates that the EFI watchdog timer should be
disabled by the platform firmware as part of the ExitBootServices()
call, but some platforms (e.g. Hyper-V) are observed to occasionally
forget to do so, resulting in a reboot approximately five minutes
after starting the operating system.
Work around these firmware bugs by disabling the watchdog timer
ourselves.
Requested-by: Andreas Hammarskjöld <junior@2PintSoftware.com>
Tested-by: Andreas Hammarskjöld <junior@2PintSoftware.com>
Signed-off-by: Michael Brown <mcb30@ipxe.org>
On some systems (observed with the Thunderbolt ports on a ThinkPad X1
Extreme Gen3 and a ThinkPad P53), if the IOMMU is enabled then the
system firmware will install an ExitBootServices notification event
that disables bus mastering on the Thunderbolt xHCI controller and all
PCI bridges, and destroys any extant IOMMU mappings. This leaves the
xHCI controller unable to perform any DMA operations.
As described in commit 236299b ("[xhci] Avoid DMA during shutdown if
firmware has disabled bus mastering"), any subsequent DMA operation
attempted by the xHCI controller will end up completing after the
operating system kernel has reenabled bus mastering, resulting in a
DMA operation to an area of memory that the hardware is no longer
permitted to access and, on Windows with the Driver Verifier enabled,
a STOP 0xE6 (DRIVER_VERIFIER_DMA_VIOLATION).
That commit avoids triggering any DMA attempts during the shutdown of
the xHCI controller itself. However, this is not a complete solution
since any attached and opened USB device (e.g. a USB NIC) may
asynchronously trigger DMA attempts that happen to occur after bus
mastering has been disabled but before we reset the xHCI controller.
Avoid this problem by installing our own ExitBootServices notification
event at TPL_NOTIFY, thereby causing it to be invoked before the
firmware's own ExitBootServices notification event that disables bus
mastering.
This unsurprisingly causes the shutdown hook itself to be invoked at
TPL_NOTIFY, which causes a fatal error when later code attempts to
raise the TPL to TPL_CALLBACK (which is a lower TPL). Work around
this problem by redefining the "internal" iPXE TPL to be variable, and
set this internal TPL to TPL_NOTIFY when the shutdown hook is invoked.
Avoid calling into an underlying SNP protocol instance from within our
shutdown hook at TPL_NOTIFY, since the underlying SNP driver may
attempt to raise the TPL to TPL_CALLBACK (which would cause a fatal
error). Failing to shut down the underlying SNP device is safe to do
since the underlying device must, in any case, have installed its own
ExitBootServices hook if any shutdown actions are required.
Reported-by: Andreas Hammarskjöld <junior@2PintSoftware.com>
Tested-by: Andreas Hammarskjöld <junior@2PintSoftware.com>
Signed-off-by: Michael Brown <mcb30@ipxe.org>
The efi_unload() function is currently missing the calls to raise and
restore the TPL. This has the side effect of causing iPXE to return
from the driver unload entry point at TPL_CALLBACK, which will cause
unexpected behaviour (typically a system lockup) shortly afterwards.
Fix by adding the missing calls to raise and restore the TPL.
Debugged-by: Petr Borsodi <petr.borsodi@gmail.com>
Signed-off-by: Michael Brown <mcb30@ipxe.org>
The EFI loaded image protocol allows an image to be provided with a
custom system table, and we currently use this mechanism to wrap any
boot services calls made by the loaded image in order to provide
strace-like debugging via DEBUG=efi_wrap.
The ExitBootServices() call will modify the global system table,
leaving the loaded image using a system table that is no longer
current. When DEBUG=efi_wrap is used, this generally results in the
machine locking up at the point that the loaded operating system calls
ExitBootServices().
Fix by modifying the global EFI system table to point to our wrapper
functions, instead of providing a custom system table via the loaded
image protocol.
Signed-off-by: Michael Brown <mcb30@ipxe.org>
A successful call to ExitBootServices() will result in the EFI console
becoming unusable. Ensure that the EFI wrapper produces a complete
line of debug output before calling the wrapped ExitBootServices()
method, and attempt subsequent debug output only if the call fails.
Signed-off-by: Michael Brown <mcb30@ipxe.org>
Commit cd3de55 ("[efi] Record cached DHCPACK from loaded image's
device handle, if present") added the ability for a chainloaded UEFI
iPXE to reuse an IPv4 address and DHCP options previously obtained by
a built-in PXE stack, without needing to perform a second DHCP
request.
Extend this to also record the cached ProxyDHCPOFFER and PXEBSACK
obtained from the EFI_PXE_BASE_CODE_PROTOCOL instance installed on the
loaded image's device handle, if present.
This allows a chainloaded UEFI iPXE to reuse a boot filename or other
options that were provided via a ProxyDHCP or PXE boot server
mechanism, rather than by standard DHCP.
Tested-by: Andreas Hammarskjöld <junior@2PintSoftware.com>
Signed-off-by: Michael Brown <mcb30@ipxe.org>
The Ip4ConfigDxe driver bug that was observed on Dell systems in
commit 64b4452 ("[efi] Blacklist the Dell Ip4ConfigDxe driver") has
also been observed on systems with a manufacturer name of "Itautec
S.A.". The symptoms of the bug are identical: an attempt to call
DisconnectController() on the LOM device handle will lock up the
system.
Fix by extending the veto to cover the Ip4ConfigDxe driver for this
manufacturer.
Debugged-by: Celso Viana <celso.vianna@gmail.com>
Signed-off-by: Michael Brown <mcb30@ipxe.org>
Provide a file "initrd.magic" via the EFI_SIMPLE_FILE_SYSTEM_PROTOCOL
that contains the initrd file as constructed for BIOS bzImage kernels
(including injected files with CPIO headers constructed by iPXE).
This allows BIOS and UEFI kernels to obtain the exact same initramfs
image, by adding "initrd=initrd.magic" to the kernel command line.
For example:
#!ipxe
kernel boot/vmlinuz initrd=initrd.magic
initrd boot/initrd.img
initrd boot/modules/e1000.ko /lib/modules/e1000.ko
initrd boot/modules/af_packet.ko /lib/modules/af_packet.ko
boot
Do not include the "initrd.magic" file within the root directory
listing, since doing so would break software such as wimboot that
processes all files within the root directory.
Signed-off-by: Michael Brown <mcb30@ipxe.org>
Restructure the EFI_SIMPLE_FILE_SYSTEM_PROTOCOL implementation to
allow for the existence of virtual files that are not simply backed by
a single underlying image.
Signed-off-by: Michael Brown <mcb30@ipxe.org>
The EFI PCI API takes a page count as the input to AllocateBuffer()
but a byte count as the input to Map(). There is nothing in the UEFI
specification that requires us to map exactly the allocated length,
and no systems have yet been observed that will fail if the map length
does not exactly match the allocated length. However, it is plausible
that some implementations may fail if asked to map a length that does
not match the length of the corresponding allocation.
Avoid potential future problems by always mapping the full allocated
length.
Signed-off-by: Michael Brown <mcb30@ipxe.org>
The iPXE build system is constructed for a standalone codebase with no
external dependencies, and does not have any equivalent of the
standard userspace ./configure script. We currently check for the
ability to include slirp/libslirp.h and conditionalise portions of
linux_api.c on its presence. The actual slirp driver code is built
unconditionally, as with all iPXE drivers.
This currently leads to a silent runtime failure if attempting to use
slirp.linux built on a system that was missing slirp/libslirp.h.
Convert this to a link-time failure by deliberately omitting the
relevant symbols from linux_api.c when slirp/libslirp.h is not
present. This allows other builds (e.g. tap.linux or tests.linux) to
succeed: the link-time failure will occur only if the slirp driver is
included within the build target.
Signed-off-by: Michael Brown <mcb30@ipxe.org>
Linux kernel 3.12 and earlier report a zero size via stat() for all
ACPI table files in sysfs. There is no way to determine the file size
other than by reading the file until EOF.
Signed-off-by: Michael Brown <mcb30@ipxe.org>
Consumers of acpi_find() will assume that returned structures include
a valid table header and that the length in the table header is
correct. These assumptions are necessary when dealing with raw ACPI
tables, since there exists no independent source of length
information.
Ensure that these assumptions are also valid for ACPI tables read from
sysfs.
Signed-off-by: Michael Brown <mcb30@ipxe.org>
The statx() system call has a clean header file and a consistent
layout, but was unfortunately added only in kernel 4.11.
Using stat() or fstat() directly is extremely messy since glibc does
not necessarily use the kernel native data structures. However, as
the only current use case is to obtain the length of an open file, we
can merely provide a wrapper that does precisely this.
Signed-off-by: Michael Brown <mcb30@ipxe.org>
Versions of gcc prior to 9.1 do not support the single-argument form
of static_assert(). Fix by unconditionally defining a compatibility
macro for the single file that uses this.
Signed-off-by: Michael Brown <mcb30@ipxe.org>
Add a driver using libslirp to provide a virtual network interface
without requiring root permissions on the host. This simplifies the
process of running iPXE as a Linux userspace application with network
access. For example:
make bin-x86_64-linux/slirp.linux
./bin-x86_64-linux/slirp.linux --net slirp
libslirp will provide a built-in emulated DHCP server and NAT router.
Settings such as the boot filename may be controlled via command-line
options. For example:
./bin-x86_64-linux/slirp.linux \
--net slirp,filename=http://192.168.0.1/boot.ipxe
Signed-off-by: Michael Brown <mcb30@ipxe.org>
The ACPI API currently expects platforms to provide access to a single
contiguous ACPI table. Some platforms (e.g. Linux userspace) do not
provide a convenient way to obtain the entire ACPI table, but do
provide access to individual tables.
All iPXE consumers of the ACPI API require access only to individual
tables.
Redefine the internal API to make acpi_find() an API method, with all
existing implementations delegating to the current RSDT-based
implementation.
Signed-off-by: Michael Brown <mcb30@ipxe.org>
When building as a Linux userspace application, iPXE currently
implements its own system calls to the host kernel rather than relying
on the host's C library. The output binary is statically linked and
has no external dependencies.
This matches the general philosophy of other platforms on which iPXE
runs, since there are no external libraries available on either BIOS
or UEFI bare metal. However, it would be useful for the Linux
userspace application to be able to link against host libraries such
as libslirp.
Modify the build process to perform a two-stage link: first picking
out the requested objects in the usual way from blib.a but with
relocations left present, then linking again with a helper object to
create a standard hosted application. The helper object provides the
standard main() entry point and wrappers for the Linux system calls
required by the iPXE Linux drivers and interface code.
Signed-off-by: Michael Brown <mcb30@ipxe.org>
Record the cached DHCPACK obtained from the EFI_PXE_BASE_CODE_PROTOCOL
instance installed on the loaded image's device handle, if present.
This allows a chainloaded UEFI iPXE to reuse the IPv4 address and DHCP
options previously obtained by the built-in PXE stack, as is already
done for a chainloaded BIOS iPXE.
Signed-off-by: Michael Brown <mcb30@ipxe.org>
The code to detect the autoboot link-layer address and to load the
autoexec script currently runs before the call to initialise() and so
has to function without a working heap.
This requirement can be relaxed by deferring this code to run via an
initialisation function. This gives the code a normal runtime
environment, but still invokes it early enough to guarantee that the
original loaded image device handle has not yet been invalidated.
Signed-off-by: Michael Brown <mcb30@ipxe.org>
The "autoboot device" and "autoexec script" functionalities in
efi_autoboot.c are unrelated except in that they both need to be
invoked by efiprefix.c before device drivers are loaded.
Split out the autoexec script portions to a separate file to avoid
potential confusion.
Signed-off-by: Michael Brown <mcb30@ipxe.org>
The original EFI_SIMPLE_TEXT_INPUT_PROTOCOL is not technically
required to handle the use of the Ctrl key, and the long-obsolete EFI
1.10 specification lists only backspace, tab, linefeed, and carriage
return as required. Some particularly brain-dead vendor UEFI firmware
implementations dutifully put in the extra effort of ensuring that all
other control characters (such as Ctrl-C) are impossible to type via
EFI_SIMPLE_TEXT_INPUT_PROTOCOL.
Current versions of the UEFI specification mandate that the console
input handle must support both EFI_SIMPLE_TEXT_INPUT_PROTOCOL and
EFI_SIMPLE_TEXT_INPUT_EX_PROTOCOL, the latter of which at least
provides access to modifier key state.
Unlike EFI_SIMPLE_TEXT_INPUT_PROTOCOL, the pointer to the
EFI_SIMPLE_TEXT_INPUT_EX_PROTOCOL instance does not appear within the
EFI system table and must therefore be opened explicitly. The UEFI
specification provides no safe way to do so, since we cannot open the
handle BY_DRIVER or BY_CHILD_CONTROLLER and so nothing guarantees that
this pointer will remain valid for the lifetime of iPXE. We must
simply hope that no UEFI firmware implementation ever discovers a
motivation for reinstalling the EFI_SIMPLE_TEXT_INPUT_EX_PROTOCOL
instance.
Use EFI_SIMPLE_TEXT_INPUT_EX_PROTOCOL if available, falling back to
the existing EFI_SIMPLE_TEXT_PROTOCOL otherwise.
Signed-off-by: Michael Brown <mcb30@ipxe.org>
When booting iPXE from a filesystem (e.g. a FAT-formatted USB key) it
can be useful to have an iPXE script loaded automatically from the
same filesystem. Compared to using an embedded script, this has the
advantage that the script can be edited without recompiling the iPXE
binary.
For the BIOS version of iPXE, loading from a filesystem is handled
using syslinux (or isolinux) which allows the script to be passed to
the iPXE .lkrn image as an initrd.
For the UEFI version of iPXE, the platform firmware loads the iPXE
.efi image directly and there is currently no equivalent of the BIOS
initrd mechanism.
Add support for automatically loading a file "autoexec.ipxe" (if
present) from the root of the filesystem containing the UEFI iPXE
binary.
A combined BIOS and UEFI image for a USB key can be created using e.g.
./util/genfsimg -o usbkey.img -s myscript.ipxe \
bin-x86_64-efi/ipxe.efi bin/ipxe.lkrn
The file "myscript.ipxe" would appear as "autoexec.ipxe" on the USB
key, and would be loaded automatically on both BIOS and UEFI systems.
Signed-off-by: Michael Brown <mcb30@ipxe.org>
Some UEFI device drivers will react to an asynchronous USB transfer
failure by dubiously terminating the scheduled transfer from within
the completion handler.
We already have code from commit fbb776f ("[efi] Leave USB endpoint
descriptors in existence until device is removed") that avoids freeing
memory in this situation, in order to avoid use-after-free bugs. This
is not sufficient to avoid potential problems, since with an xHCI
controller the act of closing the endpoint requires issuing a command
and awaiting completion via the event ring, which may in turn dispatch
further USB transfer completion events.
Avoid these problems by leaving the USB endpoint open (but with the
refill timer stopped) until the device is finally removed, as is
already done for control and bulk transfers.
Signed-off-by: Michael Brown <mcb30@ipxe.org>
There may be multiple instances of EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL for
a single PCI segment. Use the bus number range descriptor from the
ACPI resource list to identify the correct protocol instance.
There is some discrepancy between the ACPI and UEFI specifications
regarding the interpretation of values within the ACPI resource list.
The ACPI specification defines the min/max field values to be within
the secondary (device-side) address space, and defines the offset
field value as "the offset that must be added to the address on the
secondary side to obtain the address on the primary side".
The UEFI specification states instead that the offset field value is
the "offset to apply to the starting address to convert it to a PCI
address", helpfully omitting to clarify whether "to apply" in this
context means "to add" or "to subtract". The implication of the
wording is also that the "starting address" is not already a "PCI
address" and must therefore be a host-side address rather than the
ACPI-defined device-side address.
Code comments in the EDK2 codebase seem to support the latter
(non-ACPI) interpretation of these ACPI structures. For example, in
the PciHostBridgeDxe driver there can be found the comment
Macros to translate device address to host address and vice versa.
According to UEFI 2.7, device address = host address + translation
offset.
along with a pair of macros TO_HOST_ADDRESS() and TO_DEVICE_ADDRESS()
which similarly negate the sense of the "translation offset" from the
definition found in the ACPI specification.
The existing logic in efipci_ioremap() (based on a presumed-working
externally contributed patch) applies the non-ACPI interpretation: it
assumes that min/max field values are host-side addresses and that the
offset field value is negated.
Match this existing logic by assuming that min/max field values are
host-side bus numbers. (The bus number offset value is therefore not
required and so can be ignored.)
As noted in commit 9b25f6e ("[efi] Fall back to assuming identity
mapping of MMIO address space"), some systems seem to fail to provide
MMIO address space descriptors. Assume that some systems may
similarly fail to provide bus number range descriptors, and fall back
in this situation to assuming that matching on segment number alone is
sufficient.
Testing any of this is unfortunately impossible without access to
esoteric hardware that actually uses non-zero translation offsets.
Originally-implemented-by: Thomas Walker <twalker@twosigma.com>
Signed-off-by: Michael Brown <mcb30@ipxe.org>
iPXE seems to be almost alone in the UEFI world in attempting to shut
down cleanly, free resources, and leave hardware in a well-defined
reset state before handing over to the booted operating system.
The UEFI driver model does allow for graceful shutdown via
uninstallation of protocol interfaces. However, virtually no other
UEFI drivers do this, and the external code paths that react to
uninstallation are consequently poorly tested. This leads to a
proliferation of bugs found in UEFI implementations in the wild, as
described in commits such as 1295b4a ("[efi] Allow initialisation via
SNP interface even while claimed") or b6e2ea0 ("[efi] Veto the HP
XhciDxe Driver").
Try to avoid triggering such bugs by unconditionally skipping the
protocol interface uninstallation during UEFI boot services shutdown,
leaving the interfaces present but nullified and deliberately leaking
the containing memory.
Signed-off-by: Michael Brown <mcb30@ipxe.org>
The HP XhciDxe driver (observed on an HP EliteBook 840 G6) does not
respond correctly to driver disconnection, and will leave the PciIo
protocol instance opened with BY_DRIVER attributes even after
returning successfully from its Stop() method. This prevents iPXE
from subsequently connecting to the PCI device handle.
Veto this driver if the iPXE build includes a native xHCI driver.
Signed-off-by: Michael Brown <mcb30@ipxe.org>
Some UEFI drivers (observed with the "Usb Xhci Driver" on an HP
EliteBook) are particularly badly behaved: they cannot be unloaded and
will leave handles opened with BY_DRIVER attributes even after
disconnecting the driver, thereby preventing a replacement iPXE driver
from opening the handle.
Allow such drivers to be vetoed by falling back to a brute-force
mechanism that will disconnect the driver from all handles, uninstall
the driver binding protocol (to prevent it from attaching to any new
handles), and finally close any stray handles that the vetoed driver
has left open.
Signed-off-by: Michael Brown <mcb30@ipxe.org>
Most veto checks are likely to use the manufacturer name and driver
name, so pass these as parameters to minimise code duplication.
Signed-off-by: Michael Brown <mcb30@ipxe.org>
Allow external code to dump the information for an opened protocol
information entry via DBG_EFI_OPENER() et al.
Signed-off-by: Michael Brown <mcb30@ipxe.org>
Some devices (e.g. xHCI USB host controllers) may require the use of
large areas of host memory for private use by the device. These
allocations cannot be satisfied from iPXE's limited heap space, and so
are currently allocated using umalloc() which will allocate external
system memory (and alter the system memory map as needed).
Provide dma_umalloc() to provide such allocations as part of the DMA
API, since there is otherwise no way to guarantee that the allocated
regions are usable for coherent DMA.
Signed-off-by: Michael Brown <mcb30@ipxe.org>
The UEFI specification does not prohibit zero-length DMA mappings.
However, there is a reasonable chance that at least one implementation
will treat it as an invalid parameter. As a precaution, avoid calling
EFI_PCI_IO_PROTOCOL.Map() with a length of zero.
Signed-off-by: Michael Brown <mcb30@ipxe.org>
Include a potential DMA mapping within the definition of an I/O
buffer, and move all I/O buffer DMA mapping functions from dma.h to
iobuf.h. This avoids the need for drivers to maintain a separate list
of DMA mappings for each I/O buffer that they may handle.
Network device drivers typically do not keep track of transmit I/O
buffers, since the network device core already maintains a transmit
queue. Drivers will typically call netdev_tx_complete_next() to
complete a transmission without first obtaining the relevant I/O
buffer pointer (and will rely on the network device core automatically
cancelling any pending transmissions when the device is closed).
To allow this driver design approach to be retained, update the
netdev_tx_complete() family of functions to automatically perform the
DMA unmapping operation if required. For symmetry, also update the
netdev_rx() family of functions to behave the same way.
As a further convenience for drivers, allow the network device core to
automatically perform DMA mapping on the transmit datapath before
calling the driver's transmit() method. This avoids the need to
introduce a mapping error handling code path into the typically
error-free transmit methods.
With these changes, the modifications required to update a typical
network device driver to use the new DMA API are fairly minimal:
- Allocate and free descriptor rings and similar coherent structures
using dma_alloc()/dma_free() rather than malloc_phys()/free_phys()
- Allocate and free receive buffers using alloc_rx_iob()/free_rx_iob()
rather than alloc_iob()/free_iob()
- Calculate DMA addresses using dma() or iob_dma() rather than
virt_to_bus()
- Set a 64-bit DMA mask if needed using dma_set_mask_64bit() and
thereafter eliminate checks on DMA address ranges
- Either record the DMA device in netdev->dma, or call iob_map_tx() as
part of the transmit() method
- Ensure that debug messages use virt_to_phys() when displaying
"hardware" addresses
Signed-off-by: Michael Brown <mcb30@ipxe.org>
Redefine the value stored within a DMA mapping to be the offset
between physical addresses and DMA addresses within the mapped region.
Provide a dma() wrapper function to calculate the DMA address for any
pointer within a mapped region, thereby simplifying the use cases when
a device needs to be given addresses other than the region start
address.
On a platform using the "flat" DMA implementation the DMA offset for
any mapped region is always zero, with the result that dma_map() can
be optimised away completely and dma() reduces to a straightforward
call to virt_to_phys().
Signed-off-by: Michael Brown <mcb30@ipxe.org>
iPXE will currently fail all SNP interface methods with EFI_NOT_READY
while the network devices are claimed for use by iPXE's own network
stack.
As of commit c70b3e0 ("[efi] Always enable recursion when calling
ConnectController()"), this exposes latent UEFI firmware bugs on some
systems at the point of calling ExitBootServices().
With recursion enabled, the MnpDxe driver will immediately attempt to
consume the SNP protocol instance provided by iPXE. Since the network
devices are claimed by iPXE at this point, the calls by MnpDxe to
Start() and Initialize() will both fail with EFI_NOT_READY.
This unfortunately triggers a broken error-handling code path in the
Ip6Dxe driver. Specifically: Ip6DriverBindingStart() will call
Ip6CreateService(), which will call Ip6ServiceConfigMnp(), which will
return an error. The subsequent error handling code path in
Ip6CreateService() simply calls Ip6CleanService(). The code in
Ip6CleanService() will attempt to leave the all-nodes multicast group,
which will fail since the group was never joined. This will result in
Ip6CleanService() returning an error and omitting most of the required
clean-up operations. In particular, the MNP protocol instance will
remain opened with BY_DRIVER attributes even though the Ip6Dxe driver
start method has failed.
When ExitBootServices() is eventually called, iPXE will attempt to
uninstall the SNP protocol instance. This results in the UEFI core
calling Ip6DriverBindingStop(), which will fail since there is no
EFI_IP6_SERVICE_BINDING_PROTOCOL instance installed on the handle.
A failure during a call to UninstallMultipleProtocolInterfaces() will
result in the UEFI core attempting to reinstall any successfully
uninstalled protocols. This is an intrinsically unsafe operation, and
represents a fundamental design flaw in UEFI. Failure code paths
cannot be required to themselves handle failures, since there is no
well-defined correct outcome of such a situation.
With a current build of OVMF, this results in some unexpected debug
messages occurring at the time that the loaded operating system calls
ExitBootServices(). With the UEFI firmware in Hyper-V, the result is
an immediate reboot.
Work around these UEFI design and implementation flaws by allowing the
calls to our EFI_SIMPLE_NETWORK_PROTOCOL instance's Start() and
Initialize() methods to return success even when the network devices
are claimed for exclusive use by iPXE. This is sufficient to allow
MnpDxe to believe that it has successfully initialised the device, and
thereby avoids the problematic failure code paths in Ip6Dxe.
Debugged-by: Aaron Heusser <aaron_heusser@hotmail.com>
Debugged-by: Pico Mitchell <pico@randomapplications.com>
Signed-off-by: Michael Brown <mcb30@ipxe.org>
iPXE will currently drop to TPL_APPLICATION whenever the current
system time is obtained via currticks(), since the system time
mechanism relies on a timer that can fire only when the TPL is below
TPL_CALLBACK.
This can cause unexpected behaviour if the system time is obtained in
the middle of an API call into iPXE by external code. For example,
MnpDxe sets up a 10ms periodic timer running at TPL_CALLBACK to poll
the underling EFI_SIMPLE_NETWORK_PROTOCOL device for received packets.
If the resulting poll within iPXE happens to hit a code path that
requires obtaining the current system time (e.g. due to reception of
an STP packet, which affects iPXE's blocked link timer), then iPXE
will end up temporarily dropping to TPL_APPLICATION. This can
potentially result in retriggering the MnpDxe periodic timer, causing
code to be unexpectedly re-entered.
Fix by recording the external TPL at any entry point into iPXE and
dropping only as far as this external TPL, rather than dropping
unconditionally to TPL_APPLICATION.
The side effect of this change is that iPXE's view of the current
system time will be frozen for the duration of any API calls made into
iPXE by external code at TPL_CALLBACK or above. Since any such
external code is already responsible for allowing execution at
TPL_APPLICATION to occur, then this should not cause a problem in
practice.
Signed-off-by: Michael Brown <mcb30@ipxe.org>