Some PXE configurations require us to perform a third DHCP transaction
(in addition to the real DHCP transaction and the ProxyDHCP
transaction) in order to retrieve information from a "Boot Server".
This is an experimental implementation, since the actual behaviour is
not well specified in the PXE spec.
When sending to a multicast address, it may be necessary to specify
the source address explicitly, since the multicast destination address
does not provide enough information to deduce the source address via
the miniroute table.
Allow the source address specified via the data-xfer metadata to be
passed down through the TCP/IP stack to the IPv4 layer, which can use
it as a default source address.
Move all the DHCP state transition logic into a single function
dhcp_next_state(). This will make it easier to add support for PXE
Boot Servers, since it abstracts away the difference between "mark
DHCP as complete" and "transition to boot server discovery".
The Linux PXE server (http://www.kano.org.uk/projects/pxe) does not
set the server identifier in its ProxyDHCP responses. If the server
ID is missing, do not treat this as an error.
This resolves the "vague and unsettling memory" mentioned in commit
fdb8481d ("[dhcp] Verify server identifier on ProxyDHCPACKs").
Note that we already accept ProxyDHCPOFFERs without a server
identifier; they get treated as potential BOOTP packets.
At some point, it seems that someone decided to change the GUID for
the EFI_NETWORK_INTERFACE_IDENTIFIER_PROTOCOL. Current EFI builds
ignore the older GUID, older EFI builds ignore the newer GUID, so we
have to expose both.
Include a minimal component name protocol so that the driver name
shows up as something other than "<UNKNOWN>" in the driver list, and a
device path protocol so that the network interface shows up as a
separate device in the device list, rather than being attached
directly to the PCI device.
Incidentally, the EFI component name protocol reaches new depths for
signal-to-noise ratio in program code. A typical instance within the
EFI development kit will use an additional 300 lines of code to
provide slightly less functionality than GNU gettext achieves with
three additional characters.
The UEFI specification does not mention ROM checksums, and reassigns
the field typically used as a checksum byte. The UEFI shell
"loadpcirom" utility does not verify ROM checksums, but it seems that
some UEFI BIOSes do.
Some devices take a very long time to initialise. This can make it
difficult to visually distinguish between the error cases of failing
to start executing C code and failing to initialise a device.
Add a "gPXE initialising devices..." message. The trailing ellipsis
indicates to the user that this may take some time, and the presence
of the message indicates to the developer that relocation etc. all
succeeded.
elf2efi converts a suitable ELF executable (containing relocation
information, and with appropriate virtual addresses) into an EFI
executable. It is less tightly coupled with the gPXE build process
and, in particular, does not require the use of a hand-crafted PE
image header in efiprefix.S.
elf2efi correctly handles .bss sections, which significantly reduces
the size of the gPXE EFI executable.
Conventional usage of the various struct sockaddr_xxx types involves
liberal use of casting, which tends to trigger strict-aliasing
warnings from gcc. Avoid these now and in future by marking all the
relevant types with __attribute__((may_alias)).
The check for unresolved symbols does not explicitly specify an output
architecture format, and so causes a warning when building an i386 EFI
binary on an x86_64 platform. This warning is harmless, and
specifying the output architecture in multiple places is cumbersome,
so just inhibit the warning.
At POST time some BIOSes return invalid e820 maps even though
they indicate that the data is valid. We add a check that the first
region returned by e820 is RAM type and declare the map to be invalid
if it is not.
This extends the sanity checks from 8b20e5d ("[pcbios] Sanity-check
the INT15,e820 and INT15,e801 memory maps").
Driver was storing the result of pci_bar_start() and pci_bar_size() in
an int, rather than an unsigned long.
(Bug was introduced in the vendor's tree in commit eac85cd "Port
etherfabric driver to net_device api".)
adjust_pci_device() has historically enabled bus-mastering and I/O
cycles, but has never previously needed to enable memory cycles. Some
EFI systems seem not to enable memory cycles by default, so add that
to the list of PCI command register bits that we force on.
When compiling for the Linux kernel, PCI_BASE_ADDRESS_0 == 0, and
PCI_BASE_ADDRESS_1 == 1. This is not so when compiling for gPXE. We
must use the symbolic names rather than integers to get the correct
values.
Bug identified and patch supplied by:
George Chou <george.chou@advantech.com>
Currently the only supported platform for x86_64 is EFI.
Building an EFI64 gPXE requires a version of gcc that supports
__attribute__((ms_abi)). This currently means a development build of
gcc; the feature should be present when gcc 4.4 is released.
In the meantime; you can grab a suitable gcc tree from
git://git.etherboot.org/scm/people/mcb30/gcc/.git
The patch file supplied for commit 3a799e9 ("[hermon] Add PCI ID for
ConnectX QDR card") accidentally marked drivers/infiniband/hermon.c as
being executable.
EFI provides a copy of the SMBIOS table accessible via the EFI system
table, which we should use instead of manually scanning through the
F000:0000 segment.
EFI passes in copies of SMBIOS and other system configuration tables
via the EFI system table. Allow configuration tables to be requested
using a mechanism similar to the current method for requesting EFI
protocols.
On non-BBS systems, we have to hook INT 19 in order to be able to boot
from the gPXE ROM at all. However, doing this unconditionally will
prevent the user from booting via any other devices.
Previously, the INT 19 entry point would prompt the user to press B in
order to boot from gPXE, which makes it impossible to perform an
unattended network boot. We now prompt the user to press N to skip
booting from gPXE, which allows for unattended operation.
This should be a better match for most real-world scenarios. Most
modern systems support BBS and so are unaffected by this change. Very
old (non-BBS) systems tend not to have PXE ROMs by default anyway; if
the user has added a gPXE ROM then they probably do want to boot from
the network. Newer non-BBS systems are essentially limited to IBM
servers, which will recapture the INT 19 vector anyway and implement
their own boot-ordering selection mechanism.
This driver is based on Stefan Hajnoczi's summer work, which
is in turn based on version 1.01 of the linux b44 driver.
I just assembled the pieces and fixed/added a few pieces
here and there to make it work for my hardware.
The most major limitation is that this driver won't work
on systems with >1GB RAM due to the card not having enough
address bits for that and gPXE not working around this
limitation.
Still, other than that the driver works well enough for
at least 2 users :) and the above limitation can always
be fixed when somebody wants it bad enough :)
Signed-off-by: Pantelis Koukousoulas <pktoss@gmail.com>
Remove the assortment of miscellaneous hacks to guess the "network
boot device", and replace them each with a call to last_opened_netdev().
It still isn't guaranteed correct, but it won't be any worse than
before, and it will at least be consistent.
There are currently four places within the codebase that use a
heuristic to guess the "boot network device", with varying degrees of
success. Add a feature to the net device core to maintain a list of
open network devices, in order of opening, and provide a function
last_opened_netdev() to retrieve the most recently opened net device.
This should do a better job than the current assortment of
guess_boot_netdev() functions.
The AoE spec does not specify that the source MAC address of a
received packet actually matches the MAC address of the AoE target.
In principle an AoE server can respond to an AoE request on any
interface available to it, which may not be an address configured to
accept AoE requests.
This issue is resolved by implementing AoE device discovery. The
purpose of AoE discovery is to find out which addresses an AoE target
can use for requests. An AoE configuration command is sent when the
AoE attach is attempted. The AoE target must respond to that
configuration query from an interface that can accept requests.
Based on a patch from Ryan Thomas <ryan@coraid.com>
EFI_STATUS is defined as an INTN, which maps to UINT32 (i.e. unsigned
int) on i386 and UINT64 (i.e. unsigned long) on x86_64. This would
require a cast each time the error status is printed.
Add efi_strerror() to avoid this ickiness and simultaneously enable
prettier reporting of EFI status codes.
This brings us in to line with Linux definitions, and also simplifies
adding x86_64 support since both platforms have 2-byte shorts, 4-byte
ints and 8-byte long longs.
Code paths that automatically allocate memory from the FBMS at 40:13
should also free it, if possible.
Freeing this memory will not be possible if either
1. The FBMS has been modified since our allocation, or
2. We have not been able to unhook one or more BIOS interrupt vectors.
_filesz was incorrectly forced to be aligned up to MAX_ALIGN. In a
non-compressed build, this would cause a build failure unless _filesz
happened to already be aligned to MAX_ALIGN.
The return path in directed route SMPs lists the egress ports in order
from SM to node, rather than from node to SM.
To write to the correct offset within the return path, we need to
parse the hop pointer. This is held within the class-specific data
portion of the MAD header, which was previously unused by us and
defined to be a uint16_t. Define this field to be a union type; this
requires some rearrangement of ib_mad.h and corresponding changes to
ipoib.c.
The only way that PMM allows us to request a block in a region with
A20=0 is to ask for a block with an alignment of 2MB. Due to the PMM
API design, the only way we can do this is to ask for a block with a
size of 2MB.
Unfortunately, some BIOSes will hit problems if we allocate a 2MB
block. In particular, it may not be possible to enter the BIOS setup
screen; the BIOS setup code attempts a PMM allocation, fails, and
hangs the machine.
We now try allocating only as much as we need via PMM. If the
allocated block has A20=1, we free the allocated block, double the
allocation size, and try again. Repeat until either we obtain a block
with A20=0 or allocation fails. (This is guaranteed to terminate by
the time we reach an allocation size of 2MB.)
These cards very nearly support our current IB Verbs model. There is
one minor difference: multicast packets will always be delivered by
the hardware to QP0, so the driver has to redirect them to the
appropriate QP. This means that QP owners may see receive completions
for buffers that they never posted. Nothing in our current codebase
will break because of this.
This can be used with cards that require the driver to construct and
parse packet headers manually. Headers are optionally handled
out-of-line from the packet payload, since some such cards will split
received headers into a separate ring buffer.
Some Infiniband cards will not be as accommodating as the Arbel and
Hermon cards in providing enough space for us to push a fake extra
header at the start of the received packet. We must therefore make do
with squeezing enough information to identify source and destination
addresses into the two bytes of padding within a genuine IPoIB
link-layer header.
Not all Infiniband cards have embedded subnet management agents.
Split out the code that communicates with such an embedded SMA into a
separate ib_smc.c file, and have drivers call ib_smc_update()
explicitly when they suspect that the answers given by the embedded
SMA may have changed.
Receive completion handlers now get passed an address vector
containing the information extracted from the packet headers
(including the GRH, if present), and only the payload remains in the
I/O buffer.
This breaks the symmetry between transmit and receive completions, so
remove the ib_completer_t type and use an ib_completion_queue_operations
structure instead.
Rename the "destination QPN" and "destination LID" fields in struct
ib_address_vector to reflect its new dual usage.
Since the ib_completion structure now contains only an IB status code,
("syndrome") replace it with a generic gPXE integer status code.
Avoid leaking I/O buffers in ib_destroy_qp() by completing any
outstanding work queue entries with a generic error code. This
requires the completion handlers to be available to ib_destroy_qp(),
which is done by making them static configuration parameters of the CQ
(set by ib_create_cq()) rather than being provided on each call to
ib_poll_cq().
This mimics the functionality of netdev_{tx,rx}_flush(). The netdev
flush functions would previously have been catching any I/O buffers
leaked by the IPoIB data queue (though not by the IPoIB metadata
queue).
Add the simplified ne2k_isa driver. It is just a selective copy+paste
of the relevant parts from ns8390.c plus a little trivial hacking to
make it actually work.
It is true that the code is pretty ugly, but:
a) ns8390.c is worse
b) It is only 372 lines and no #ifdefs
c) It works both in qemu/bochs and in real hardware
and we all know it is easier to cleanup working code
Hope someone will find the time to rewrite this driver properly,
but until then at least for me this is an ok solution.
Signed-off-by: Pantelis Koukousoulas <pktoss@gmail.com>
netdev_rx_err() and netdev_tx_complete_err() get passed the error
code, but currently use it only in debug messages.
Retain error numbers and frequencey counts for up to
NETDEV_MAX_UNIQUE_ERRORS (4) different errors for each of TX and RX.
This allows the "ifstat" command to report the reasons for TX/RX
errors in most cases, even in non-debug builds.
Halting the PEGs breaks platforms where there is sideband access to
the NIC (e.g. HP machines using iLO). (We have to retain the
unhalting code because on some other platforms (e.g. IBM blades with
BOFM) the pre-PXE firmware must halt the PEGs to avoid issues with the
BIOS rereading via the expansion ROM BAR.)
The retry timer needs to be running as soon as we know that we are
trying to transmit a command. If transmission fails because of a
temporary error condition, then the timer will allow us to retry the
transmission later.
This fixes a regression introduced in commit 612f4e7:
[settings] Avoid returning uninitialised data on error in fetch_xxx_setting()
in which the memset() was moved from fetch_string_setting() to
fetch_setting(), in order that it would be useful for non-string
setting types. However, this neglects to take into account the fact
that fetch_string_setting() shrinks its buffer by one byte (to allow
for the NUL) before calling fetch_setting().
Restore the memset() in fetch_string_setting(), so that the
terminating NUL is guaranteed to actually be a NUL.
With a 16-bit operand, lgdt/lidt will load only a 24-bit base address,
ignoring the high-order bits. This meant that we could fail to fully
restore the GDT across a call into gPXE, if the GDT happened to be
located above the 16MB mark.
Not all of our lgdt/lidt instructions require a data32 prefix (for
example, reloading the real-mode IDT can never require a 32-bit base
address), but by adding them everywhere we will hopefully not forget
the necessary ones in future.
This is something of an ugly hack to accommodate an OEM requirement.
The NIC has only one expansion ROM BAR, rather than one per port. To
allow individual ports to be selectively enabled/disabled for PXE boot
(as required), we must therefore leave the expansion ROM always
enabled, and place the per-port enable/disable logic within the gPXE
driver.
Some hardware vendors have been known to remove all gPXE-related
branding from ROMs that they build. While this is not prohibited by
the GPL, it is a little impolite.
Add a facility for adding branding messages via two #defines
(PRODUCT_NAME and PRODUCT_SHORT_NAME) in config/general.h. This
should accommodate all known OEM-mandated branding requirements.
Vendors with branding requirements that cannot be satisfied by using
PRODUCT_NAME and/or PRODUCT_SHORT_NAME should contact us so that we
can extended this facility as necessary.
The Phantom firmware selectively disables PCI functions based on the
board type, with the end result that we see one PCI function for each
network port. This allows us to eliminate the code for reading from
flash and, more importantly, removes knowledge of the board type magic
number from the gPXE driver.
This function is a major kludge, but can be made slightly more
accurate by ignoring net devices that aren't open. Eventually it
needs to be removed entirely.
Settings can be constructed using a dotted-decimal notation, to allow
for access to unnamed settings. The default interpretation is as a
DHCP option number (with encapsulated options represented as
"<encapsulating option>.<encapsulated option>".
In several contexts (e.g. SMBIOS, Phantom CLP), it is useful to
interpret the dotted-decimal notation as referring to non-DHCP
options. In this case, it becomes necessary for these contexts to
ignore standard DHCP options, otherwise we end up trying to, for
example, retrieve the boot filename from SMBIOS.
Allow settings blocks to specify a "tag magic". When dotted-decimal
notation is used to construct a setting, the tag magic value of the
originating settings block will be ORed in to the tag number.
Store/fetch methods can then check for the magic number before
interpreting arbitrarily-numbered settings.
This extends the sanity checks on the runtime segment address provided
in %bx, first implemented in commit 5600955.
We now allow the ROM to be placed anywhere above a000:0000 (rather
than c000:0000, as before), since this is the region allowed by the
PCI 3 spec. If the BIOS asks us to place the runtime image such that
it would overlap with the init-time image (which is explicitly
prohibited by the PCI 3 spec), then we assume that the BIOS is faulty
and ignore the provided runtime segment address.
Testing on a SuperMicro BIOS providing overlapping segment addresses
shows that ignoring the provided runtime segment address is safe to do
in these circumstances.
This interface provides access to firmware settings (e.g. MAC address)
that will apply to all drivers loaded for the duration of the current
system boot.
A hardware bug means that reads through the expansion ROM BAR can
return corrupted data if the PEGs are running. This breaks platforms
that re-read the expansion ROM after invoking gPXE code, such as IBM
blade servers.
Halt PEGs during driver shutdown, and unhalt PEGs during driver
startup if we detect that this is not the first startup since
power-on.
A DOS-style full path name such as "C:\Program Files\tftpboot\nbp.0"
satisfies the syntax requirements for a URI with a scheme of "C" and
an opaque portion of "\Program Files\tftpboot\nbp.0".
Add a check in parse_uri() to ignore schemes that are apparently only
a single character long; this avoids interpreting DOS-style paths in
this way, and shouldn't affect any practical URI scheme.
Most other Phantom drivers define a register space in terms of a 64M
virtual address space. While this doesn't map in any meaningful way
to the actual addresses used on the latest cards, it makes maintenance
easier if we do the same.
Someone at Dell must have a full-time job designing ways to screw up
implementations of INT 15,e820. This latest gem is courtesy of a Dell
Xanadu system, which arbitrarily decides to obliterate the contents of
%esi.
Preserve %esi, %edi and %ebp across calls to INT 15,e820, in case
someone tries a variation on this trick in future.
Callers (e.g. usr/autoboot.c) may not check the return values from
fetch_xxx_setting(), assuming that in error cases the returned setting
value will be "empty" (for some sensible value of "empty").
In particular, if the DHCP server did not specify a next-server
address, this would result in gPXE using uninitialised data for the
TFTP server IP address.
FreeBSD requires the object format to be specified as elf_i386_fbsd,
rather than elf_i386.
Based on a patch from Eygene Ryabinkin <rea-fbsd@codelabs.ru>
Some PCI 3 BIOSes seem to provide a garbage value in %bx, which should
contain the runtime segment address. Perform a basic sanity check: we
reject the segment if it is below the start of option ROM space. If
the sanity check fails, we assume that the BIOS was not expecting us
to be a PCI 3 ROM, and we just leave our image in situ.
The section name seems to have significance for some versions of
binutils.
There is no way to instruct gcc that sections such as .bss16 contain
uninitialised data; it will emit them with contents explicitly set to
zero. We therefore have to rely on the linker script to force these
sections to become uninitialised-data sections. We do this by marking
them as NOLOAD; this seems to be the closest semantic equivalent in the
linker script language.
However, this gets ignored by some versions of ld (including 2.17 as
shipped with Debian Etch), which mark the resulting sections with
(CONTENTS,ALLOC,LOAD,DATA). Combined with the fact that this version of
ld seems to ignore the specified LMA for these sections, this means that
they end up overlapping other sections, and so parts of .prefix (for
example) get obliterated by .data16's bss section.
Rename the .bss sections from .section_bss to .bss.section; this seems to
cause these versions of ld to treat them as uninitialised data.
Not fully understood, but it seems that the LMA of bss sections matters
for some newer binutils builds. Force all bss sections to have an LMA
at the end of the file, so that they don't interfere with other
sections.
The symptom was that objcopy -O binary -j .zinfo would extract the
.zinfo section from bin/xxx.tmp as a blob of the correct length, but
with zero contents. This would then cause the [ZBIN] stage of the
build to fail.
Also explicitly state that .zinfo(.*) sections have @progbits, in case
some future assembler or linker variant decides to omit them.
The virtnet_transmit() logic for waiting the packet to be transmitted is
reversed: we can't wait the packet to be transmitted if we didn't kick()
the ring yet. The vring_more_used() while loop logic is reversed also,
that explains why the code works today.
The current code risks trying to free a buffer from the used ring
when none was available, that will happen most times because KVM
doesn't handle the packet immediately on kick(). Luckily it was working
because it was unlikely to have a buffer still queued for transmit when
virtnet_transmit() was called.
Also, adds a BUG_ON() to vring_get_buf(), to catch cases where we try
to free a buffer from the used ring when there was none available.
Patch for Etherboot. gPXE has the same problem on the code, but I hadn't
a chance to test gPXE using virtio-net yet.
Signed-off-by: Eduardo Habkost <ehabkost@redhat.com>
Signed-off-by: Stefan Hajnoczi <stefanha@gmail.com>
EFI requires us to be able to specify the source address for
individual transmitted packets, and to be able to extract the
destination address on received packets.
Take advantage of this to rationalise the push() and pull() methods so
that push() takes a (dest,source,proto) tuple and pull() returns a
(dest,source,proto) tuple.
Multicast hashing is an ugly overlap between network and link layers.
EFI requires us to provide access to this functionality, so move it
out of ipv4.c and expose it as a method of the link layer.
Some versions of ld choke on the "AT ( _xxx_lma )" in efi.lds with an
error saying "nonconstant expression for load base". Since these were
only explicitly setting the LMA to the address that it would have had
anyway, they can be safely omitted.
We have EFI APIs for CPU I/O, PCI I/O, timers, console I/O, user
access and user memory allocation.
EFI executables are created using the vanilla GNU toolchain, with the
EXE header handcrafted in assembly and relocations generated by a
custom efilink utility.
monojob_wait() was holding a reference to the completed job, meaning that
various objects would not be freed until the next job was plugged in to
the monojob interface.
The userptr_t is now the fundamental type that gets used for conversions.
For example, virt_to_phys() is implemented in terms of virt_to_user() and
user_to_phys().
-Wformat-nonliteral is not enabled by -Wall and needs to be explicitly
specified.
Modified the few files that use nonliteral format strings to work with
this new setting in place.
Inspired by a patch from Carl Karsten <carl@personnelware.com> and an
identical patch from Rorschach <r0rschach@lavabit.com>.
The intention is to include near-verbatim copies of the EFI headers
required by gPXE. This is achieved using the import.pl script in
src/include/gpxe/efi.
Note that import.pl will modify any #include lines in each imported
header to reflect its new location within the gPXE tree. It will also
tidy up the file by removing carriage return characters and trailing
whitespace.
Reduce the number of sections within the linker script to match the
number of practical sections within the output file.
Define _section, _msection, _esection, _section_filesz, _section_memsz,
and _section_lma for each section, replacing the mixture of symbols that
previously existed.
In particular, replace _text and _end with _textdata and _etextdata, to
make it explicit within code that uses these symbols that the .text and
.data sections are always treated as a single contiguous block.
Allow for the build CPU architecture and platform to be specified as part
of the make command goals. For example:
make bin/rtl8139.rom # Standard i386 PC-BIOS build
make bin-efi/rtl8139.efi # i386 EFI build
The generic syntax is "bin[-[arch-]platform]", with the default
architecture being "i386" (regardless of the host architecture) and the
default platform being "pcbios".
Non-path targets such as "srcs" can be specified using e.g.
make bin-efi srcs
Note that this changeset is merely Makefile restructuring to allow the
build architecture and platform to be determined by the make command
goals, and to export these to compiled code via the ARCH and PLATFORM
defines. It doesn't actually introduce any new build platforms.
Some devices (e.g. the Atmel AT24C11) have no concept of a device
address; they respond to every device address and use this value as
the word address. Some other devices use part of the device address
field to extend the word address field.
Generalise the i2c bit-bashing support to handle this by defining the
device address length and word address length as properties of an i2c
device. The word address is assumed to overflow into the device
address field if the address used exceeds the width of the word
address field.
Also add a bus reset mechanism. i2c chips don't usually have a reset
line, so rebooting the host will not clear any bizarre state that the
chip may be in. We reset the bus by clocking SCL until we see SDA
high, at which point we know we can generate a start condition and
have it seen by all devices. We then generate a stop condition to
leave the bus in a known state prior to use.
Finally, add some extra debugging messages to i2c_bit.c.
Some older versions of gcc don't complain about unknown compiler flags
unless you ask them to actually compile; asking them to merely
preprocess won't trigger the error.
Fix the -fno-stack-protector test by making it attempt to compile an
empty file, rather than preprocess an empty file.
The usefulness of DBGLVL_IO is limited by the fact that many cards
require large numbers of uninteresting I/O reads/writes at device
probe time, typically when driving a bit-bashing I2C/SPI bus to read
the MAC address.
This patch adds the DBG_DISABLE() and DBG_ENABLE() macros, which can
be used to temporarily disable and re-enable selected debug levels.
Note that debug levels must still be enabled in the build in order to
function at all: you can't use DBG_ENABLE(DBGLVL_IO) in an object
built with DEBUG=object:1 and expect it to do anything.
?= in a Makefile means that that variable can be overridden by the
environment. This is confusing to users, especially with a generic
name like "ARCH".
Signed-off-by: H. Peter Anvin <hpa@zytor.com>
Although the E820 API allows for a caller to provide only a 20-byte
buffer, there exists at least one combination (HP BIOS, 32-bit WinPE)
that relies on information found only in the "extended attributes"
field, which requires a 24-byte buffer.
Allow for up to a 64-byte E820 buffer, in the hope of coping with
future idiocies like this one.
The ACPI specification defines an additional 4-byte field at offset 20
for an E820 memory map entry. This field is presumably optional,
since generally E820 gets given only a 20-byte buffer to fill.
However, the bits of this optional field are defined as:
bit 0 : region is enabled
bit 1 : region is non-volatile memory rather than RAM
so it seems as though callers that pass in only a 20-byte buffer may
be missing out on some rather important information.
Our INT 15,e820 code was setting %es=%ss (as part of the "look ahead
in the memory map" logic), but failing to restore %es afterwards.
This is a serious bug, but wasn't affecting many platforms because
almost all callers seem to set %es=%ss anyway.
Use individual page mappings rather than a single whole-region
mapping, to avoid the waste of memory that occurs due to the
constraint that each mapped block must be aligned on its own size.
Some BIOSes require us to pass in not only the continuation value (in
%ebx) as returned by the previous call to INT 15,e820 but also the
unmodified buffer (at %es:%di) as returned by the previous call to INT
15,e820. Apparently, someone thought it would be a worthwhile
optimisation to fill in only the low dword of the "length" field and
the low byte of the "type field", assuming that the buffer would
remain unaltered from the previous call.
This problem was being triggered by the "peek ahead" logic in
get_mangled_e820(), which would read the next entry into a temporary
buffer in order to be able to guarantee terminating the map with
%ebx=0 rather than CF=1. (Terminating with CF=1 upsets some Windows
flavours, despite being documented legal behaviour.)
Work around this problem by always fetching directly into our e820
cache; that way we can guarantee that the underlying call always sees
the previous buffer contents (and the same buffer address).
We were accidentally allocating only half the required amount of
memory (given the alignment method) for the firmware buffer, leading
to conflicts between the firmware buffer and gPXE code/data segments.
We were accidentally allocating only half the required amount of
memory (given the alignment method) for the firmware buffer, leading
to conflicts between the firmware buffer and gPXE code/data segments.
We seem to be having issues with various E820 memory maps. These
problems are often difficult to reproduce, requiring access to the
specific system exhibiting the problem.
Add a facility for hooking in a fake E820 map generator, using an
arbitrary map defined in a C array, solely in order to be able to test
the map-mangling code against arbitrary E820 maps.
In particular, allow BANNER_TIMEOUT=0 to inhibit the prompt banners
altogether.
Ironically, this request comes from the same OEM that originally
required the prompts to be present during POST.
Some really moronic BIOSes bring up the PXE stack via the UNDI loader
entry point during POST, and then don't bother to unload it before
overwriting the code and data segments. If this happens, we really
don't want to leave INT 15 hooked, because that will cause any loaded
OS to die horribly as soon as it attempts to fetch the system memory
map.
We use a heuristic to detect whether or not we are being loaded at the
top of free base memory. If we determine that we are being loaded at
some other arbitrary location in base memory, then we assume that it's
not safe to hook INT 15.
This allows settings to be expanded in a way that is safe to include
within a URI string, such as
kernel http://10.0.0.1/boot.php?mf=${manufacturer:uristring}
where the ${manufacturer} setting may contain characters that are not
permitted (or have reserved purposes) within a URI.
Since whitespace characters will be URI-encoded (e.g. "%20" for a
space character), this also works around the problem that spaces
within an expanded setting would cause the shell to split command-line
arguments incorrectly.
On non-BBS systems we hook INT 19, since there is no other way we can
guarantee gaining control of the flow of execution. If we end up
doing this, prompt the user before attempting boot, since forcibly
capturing INT 19 is rather antisocial.
It is possible for the BIOS to use the UNDI API to bring up the NIC
prior to system boot. If this happens, UNM_NIC_REG_CMDPEG_STATE will
contain the value 0xf00f (UNM_NIC_REG_CMDPEG_STATE_INITIALIZE_ACK),
and we should skip initialising the command PEG.
The firmware will now determine the right port mode on all cards, so
the PXE driver doesn't have to set it. (Setting the port mode
apparently breaks some newer cards.)
At least one Dell system calls the UNDI loader entry point with the
BIOS console disabled. The serial console is active only after a call
to initialise(), so move the debug message in undi_loader() so that it
can be displayed via the serial console.
If the INT 15,e820 memory map reports a region [0,0), this confuses
the "truncate to even megabytes" logic, which ends up rounding the
region 'down' to [0,fff00000).
Fix by ensuring that the region's end address is at least 1, before we
subtract 1 to obtain the "last byte in region" address.
INT 15,e801 is capable of returning a memory range that extends to
4GB, so allow for this in the debug message that shows the data
returned by INT 15,e801.
The domain etherboot.org was actually registered on 2000-01-09, not
2000-09-01. (To put it another way, it was registered on 1/9/2000 (US
date format) rather than 1/9/2000 (sensible date format); this may
illuminate the cause of the error.)
"iqn.2000-09.org.etherboot:" is still valid as per RFC3720, but may be
surprising to users, so change it to something less unexpected.
Thanks to the anonymous contributor for pointing this one out.
Apparently some BIOSes will place option ROMs on 512-byte boundaries.
While this is against specification, it doesn't actually hurt
anything, so we may as well increase our scan granularity to 512
bytes.
Contributed by Luca <lucarx76@gmail.com>
Wyse Streaming Manager server (WLDRM13.BIN) assumes that the PXENV+
entry point is at UNDI_CS:0000; apparently, somebody at Wyse has
difficulty distinguishing between the words "may" and "must"...
Add a dummy entry point at UNDI_CS:0000, which just jumps to the
correct entry point.
The multiboot specification states that, for raw images, if
load_end_addr is zero then it should be interpreted as meaning "use
the entire file", and if bss_end_addr is zero it should be interpreted
as meaning "no bss".
Must check that argument to a fclose() is not NULL -- we can get to the
'err' label when file was not opened. fclose(NULL) is known to produce
core dump on some platforms and we don't want zbin to fail so loudly.
Signed-off-by: Eygene Ryabinkin <rea-fbsd@codelabs.ru>
Explicitly state that we are using 32-bit addressing in 16-bit code.
GNU as 2.15 (FreeBSD/amd64 7-STABLE) got confused that 32-bit registers
are used in the code that was declared as 16-bit. Add explicit modifier
'addr32' to make assembler happy.
Signed-off-by: Eygene Ryabinkin <rea-fbsd@codelabs.ru>
IBM's iSCSI Firmware Initiator checks the UNDIROMID pointer in the
!PXE structure that gets created by the UNDI loader. We didn't
previously fill this value in.
Commit f58cc3f introduced a temporary workaround for a bug in current
prototype silicon, but failed to apply it to all eight PCI functions
within the device.
Option::ROM was assuming that ROM images using a short jump
instruction for the init entry point would have a zero byte at offset
5; this is not necessarily true.