diff --git a/src/include/ipxe/efi/Protocol/Arp.h b/src/include/ipxe/efi/Protocol/Arp.h new file mode 100644 index 000000000..80921f9a0 --- /dev/null +++ b/src/include/ipxe/efi/Protocol/Arp.h @@ -0,0 +1,387 @@ +/** @file + EFI ARP Protocol Definition + + The EFI ARP Service Binding Protocol is used to locate EFI + ARP Protocol drivers to create and destroy child of the + driver to communicate with other host using ARP protocol. + The EFI ARP Protocol provides services to map IP network + address to hardware address used by a data link protocol. + +Copyright (c) 2006 - 2010, Intel Corporation. All rights reserved.
+This program and the accompanying materials are licensed and made available under +the terms and conditions of the BSD License that accompanies this distribution. +The full text of the license may be found at +http://opensource.org/licenses/bsd-license.php. + +THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS, +WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED. + + @par Revision Reference: + This Protocol was introduced in UEFI Specification 2.0. + +**/ + +#ifndef __EFI_ARP_PROTOCOL_H__ +#define __EFI_ARP_PROTOCOL_H__ + +FILE_LICENCE ( BSD3 ); + +#define EFI_ARP_SERVICE_BINDING_PROTOCOL_GUID \ + { \ + 0xf44c00ee, 0x1f2c, 0x4a00, {0xaa, 0x9, 0x1c, 0x9f, 0x3e, 0x8, 0x0, 0xa3 } \ + } + +#define EFI_ARP_PROTOCOL_GUID \ + { \ + 0xf4b427bb, 0xba21, 0x4f16, {0xbc, 0x4e, 0x43, 0xe4, 0x16, 0xab, 0x61, 0x9c } \ + } + +typedef struct _EFI_ARP_PROTOCOL EFI_ARP_PROTOCOL; + +typedef struct { + /// + /// Length in bytes of this entry. + /// + UINT32 Size; + + /// + /// Set to TRUE if this entry is a "deny" entry. + /// Set to FALSE if this entry is a "normal" entry. + /// + BOOLEAN DenyFlag; + + /// + /// Set to TRUE if this entry will not time out. + /// Set to FALSE if this entry will time out. + /// + BOOLEAN StaticFlag; + + /// + /// 16-bit ARP hardware identifier number. + /// + UINT16 HwAddressType; + + /// + /// 16-bit protocol type number. + /// + UINT16 SwAddressType; + + /// + /// The length of the hardware address. + /// + UINT8 HwAddressLength; + + /// + /// The length of the protocol address. + /// + UINT8 SwAddressLength; +} EFI_ARP_FIND_DATA; + +typedef struct { + /// + /// 16-bit protocol type number in host byte order. + /// + UINT16 SwAddressType; + + /// + /// The length in bytes of the station's protocol address to register. + /// + UINT8 SwAddressLength; + + /// + /// The pointer to the first byte of the protocol address to register. For + /// example, if SwAddressType is 0x0800 (IP), then + /// StationAddress points to the first byte of this station's IP + /// address stored in network byte order. + /// + VOID *StationAddress; + + /// + /// The timeout value in 100-ns units that is associated with each + /// new dynamic ARP cache entry. If it is set to zero, the value is + /// implementation-specific. + /// + UINT32 EntryTimeOut; + + /// + /// The number of retries before a MAC address is resolved. If it is + /// set to zero, the value is implementation-specific. + /// + UINT32 RetryCount; + + /// + /// The timeout value in 100-ns units that is used to wait for the ARP + /// reply packet or the timeout value between two retries. Set to zero + /// to use implementation-specific value. + /// + UINT32 RetryTimeOut; +} EFI_ARP_CONFIG_DATA; + + +/** + This function is used to assign a station address to the ARP cache for this instance + of the ARP driver. + + Each ARP instance has one station address. The EFI_ARP_PROTOCOL driver will + respond to ARP requests that match this registered station address. A call to + this function with the ConfigData field set to NULL will reset this ARP instance. + + Once a protocol type and station address have been assigned to this ARP instance, + all the following ARP functions will use this information. Attempting to change + the protocol type or station address to a configured ARP instance will result in errors. + + @param This The pointer to the EFI_ARP_PROTOCOL instance. + @param ConfigData The pointer to the EFI_ARP_CONFIG_DATA structure. + + @retval EFI_SUCCESS The new station address was successfully + registered. + @retval EFI_INVALID_PARAMETER One or more of the following conditions is TRUE: + * This is NULL. + * SwAddressLength is zero when ConfigData is not NULL. + * StationAddress is NULL when ConfigData is not NULL. + @retval EFI_ACCESS_DENIED The SwAddressType, SwAddressLength, or + StationAddress is different from the one that is + already registered. + @retval EFI_OUT_OF_RESOURCES Storage for the new StationAddress could not be + allocated. + +**/ +typedef +EFI_STATUS +(EFIAPI *EFI_ARP_CONFIGURE)( + IN EFI_ARP_PROTOCOL *This, + IN EFI_ARP_CONFIG_DATA *ConfigData OPTIONAL + ); + +/** + This function is used to insert entries into the ARP cache. + + ARP cache entries are typically inserted and updated by network protocol drivers + as network traffic is processed. Most ARP cache entries will time out and be + deleted if the network traffic stops. ARP cache entries that were inserted + by the Add() function may be static (will not time out) or dynamic (will time out). + Default ARP cache timeout values are not covered in most network protocol + specifications (although RFC 1122 comes pretty close) and will only be + discussed in general terms in this specification. The timeout values that are + used in the EFI Sample Implementation should be used only as a guideline. + Final product implementations of the EFI network stack should be tuned for + their expected network environments. + + @param This Pointer to the EFI_ARP_PROTOCOL instance. + @param DenyFlag Set to TRUE if this entry is a deny entry. Set to + FALSE if this entry is a normal entry. + @param TargetSwAddress Pointer to a protocol address to add (or deny). + May be set to NULL if DenyFlag is TRUE. + @param TargetHwAddress Pointer to a hardware address to add (or deny). + May be set to NULL if DenyFlag is TRUE. + @param TimeoutValue Time in 100-ns units that this entry will remain + in the ARP cache. A value of zero means that the + entry is permanent. A nonzero value will override + the one given by Configure() if the entry to be + added is a dynamic entry. + @param Overwrite If TRUE, the matching cache entry will be + overwritten with the supplied parameters. If + FALSE, EFI_ACCESS_DENIED is returned if the + corresponding cache entry already exists. + + @retval EFI_SUCCESS The entry has been added or updated. + @retval EFI_INVALID_PARAMETER One or more of the following conditions is TRUE: + * This is NULL. + * DenyFlag is FALSE and TargetHwAddress is NULL. + * DenyFlag is FALSE and TargetSwAddress is NULL. + * TargetHwAddress is NULL and TargetSwAddress is NULL. + * Neither TargetSwAddress nor TargetHwAddress are NULL when DenyFlag is + TRUE. + @retval EFI_OUT_OF_RESOURCES The new ARP cache entry could not be allocated. + @retval EFI_ACCESS_DENIED The ARP cache entry already exists and Overwrite + is not true. + @retval EFI_NOT_STARTED The ARP driver instance has not been configured. + +**/ +typedef +EFI_STATUS +(EFIAPI *EFI_ARP_ADD)( + IN EFI_ARP_PROTOCOL *This, + IN BOOLEAN DenyFlag, + IN VOID *TargetSwAddress OPTIONAL, + IN VOID *TargetHwAddress OPTIONAL, + IN UINT32 TimeoutValue, + IN BOOLEAN Overwrite + ); + +/** + This function searches the ARP cache for matching entries and allocates a buffer into + which those entries are copied. + + The first part of the allocated buffer is EFI_ARP_FIND_DATA, following which + are protocol address pairs and hardware address pairs. + When finding a specific protocol address (BySwAddress is TRUE and AddressBuffer + is not NULL), the ARP cache timeout for the found entry is reset if Refresh is + set to TRUE. If the found ARP cache entry is a permanent entry, it is not + affected by Refresh. + + @param This The pointer to the EFI_ARP_PROTOCOL instance. + @param BySwAddress Set to TRUE to look for matching software protocol + addresses. Set to FALSE to look for matching + hardware protocol addresses. + @param AddressBuffer The pointer to the address buffer. Set to NULL + to match all addresses. + @param EntryLength The size of an entry in the entries buffer. + @param EntryCount The number of ARP cache entries that are found by + the specified criteria. + @param Entries The pointer to the buffer that will receive the ARP + cache entries. + @param Refresh Set to TRUE to refresh the timeout value of the + matching ARP cache entry. + + @retval EFI_SUCCESS The requested ARP cache entries were copied into + the buffer. + @retval EFI_INVALID_PARAMETER One or more of the following conditions is TRUE: + This is NULL. Both EntryCount and EntryLength are + NULL, when Refresh is FALSE. + @retval EFI_NOT_FOUND No matching entries were found. + @retval EFI_NOT_STARTED The ARP driver instance has not been configured. + +**/ +typedef +EFI_STATUS +(EFIAPI *EFI_ARP_FIND)( + IN EFI_ARP_PROTOCOL *This, + IN BOOLEAN BySwAddress, + IN VOID *AddressBuffer OPTIONAL, + OUT UINT32 *EntryLength OPTIONAL, + OUT UINT32 *EntryCount OPTIONAL, + OUT EFI_ARP_FIND_DATA **Entries OPTIONAL, + IN BOOLEAN Refresh + ); + + +/** + This function removes specified ARP cache entries. + + @param This The pointer to the EFI_ARP_PROTOCOL instance. + @param BySwAddress Set to TRUE to delete matching protocol addresses. + Set to FALSE to delete matching hardware + addresses. + @param AddressBuffer The pointer to the address buffer that is used as a + key to look for the cache entry. Set to NULL to + delete all entries. + + @retval EFI_SUCCESS The entry was removed from the ARP cache. + @retval EFI_INVALID_PARAMETER This is NULL. + @retval EFI_NOT_FOUND The specified deletion key was not found. + @retval EFI_NOT_STARTED The ARP driver instance has not been configured. + +**/ +typedef +EFI_STATUS +(EFIAPI *EFI_ARP_DELETE)( + IN EFI_ARP_PROTOCOL *This, + IN BOOLEAN BySwAddress, + IN VOID *AddressBuffer OPTIONAL + ); + +/** + This function delete all dynamic entries from the ARP cache that match the specified + software protocol type. + + @param This The pointer to the EFI_ARP_PROTOCOL instance. + + @retval EFI_SUCCESS The cache has been flushed. + @retval EFI_INVALID_PARAMETER This is NULL. + @retval EFI_NOT_FOUND There are no matching dynamic cache entries. + @retval EFI_NOT_STARTED The ARP driver instance has not been configured. + +**/ +typedef +EFI_STATUS +(EFIAPI *EFI_ARP_FLUSH)( + IN EFI_ARP_PROTOCOL *This + ); + +/** + This function tries to resolve the TargetSwAddress and optionally returns a + TargetHwAddress if it already exists in the ARP cache. + + @param This The pointer to the EFI_ARP_PROTOCOL instance. + @param TargetSwAddress The pointer to the protocol address to resolve. + @param ResolvedEvent The pointer to the event that will be signaled when + the address is resolved or some error occurs. + @param TargetHwAddress The pointer to the buffer for the resolved hardware + address in network byte order. + + @retval EFI_SUCCESS The data is copied from the ARP cache into the + TargetHwAddress buffer. + @retval EFI_INVALID_PARAMETER One or more of the following conditions is TRUE: + This is NULL. TargetHwAddress is NULL. + @retval EFI_ACCESS_DENIED The requested address is not present in the normal + ARP cache but is present in the deny address list. + Outgoing traffic to that address is forbidden. + @retval EFI_NOT_STARTED The ARP driver instance has not been configured. + @retval EFI_NOT_READY The request has been started and is not finished. + +**/ +typedef +EFI_STATUS +(EFIAPI *EFI_ARP_REQUEST)( + IN EFI_ARP_PROTOCOL *This, + IN VOID *TargetSwAddress OPTIONAL, + IN EFI_EVENT ResolvedEvent OPTIONAL, + OUT VOID *TargetHwAddress + ); + +/** + This function aborts the previous ARP request (identified by This, TargetSwAddress + and ResolvedEvent) that is issued by EFI_ARP_PROTOCOL.Request(). + + If the request is in the internal ARP request queue, the request is aborted + immediately and its ResolvedEvent is signaled. Only an asynchronous address + request needs to be canceled. If TargeSwAddress and ResolveEvent are both + NULL, all the pending asynchronous requests that have been issued by This + instance will be cancelled and their corresponding events will be signaled. + + @param This The pointer to the EFI_ARP_PROTOCOL instance. + @param TargetSwAddress The pointer to the protocol address in previous + request session. + @param ResolvedEvent Pointer to the event that is used as the + notification event in previous request session. + + @retval EFI_SUCCESS The pending request session(s) is/are aborted and + corresponding event(s) is/are signaled. + @retval EFI_INVALID_PARAMETER One or more of the following conditions is TRUE: + This is NULL. TargetSwAddress is not NULL and + ResolvedEvent is NULL. TargetSwAddress is NULL and + ResolvedEvent is not NULL. + @retval EFI_NOT_STARTED The ARP driver instance has not been configured. + @retval EFI_NOT_FOUND The request is not issued by + EFI_ARP_PROTOCOL.Request(). + + +**/ +typedef +EFI_STATUS +(EFIAPI *EFI_ARP_CANCEL)( + IN EFI_ARP_PROTOCOL *This, + IN VOID *TargetSwAddress OPTIONAL, + IN EFI_EVENT ResolvedEvent OPTIONAL + ); + +/// +/// ARP is used to resolve local network protocol addresses into +/// network hardware addresses. +/// +struct _EFI_ARP_PROTOCOL { + EFI_ARP_CONFIGURE Configure; + EFI_ARP_ADD Add; + EFI_ARP_FIND Find; + EFI_ARP_DELETE Delete; + EFI_ARP_FLUSH Flush; + EFI_ARP_REQUEST Request; + EFI_ARP_CANCEL Cancel; +}; + + +extern EFI_GUID gEfiArpServiceBindingProtocolGuid; +extern EFI_GUID gEfiArpProtocolGuid; + +#endif diff --git a/src/include/ipxe/efi/Protocol/Dhcp4.h b/src/include/ipxe/efi/Protocol/Dhcp4.h new file mode 100644 index 000000000..560ee3224 --- /dev/null +++ b/src/include/ipxe/efi/Protocol/Dhcp4.h @@ -0,0 +1,782 @@ +/** @file + EFI_DHCP4_PROTOCOL as defined in UEFI 2.0. + EFI_DHCP4_SERVICE_BINDING_PROTOCOL as defined in UEFI 2.0. + These protocols are used to collect configuration information for the EFI IPv4 Protocol + drivers and to provide DHCPv4 server and PXE boot server discovery services. + +Copyright (c) 2006 - 2010, Intel Corporation. All rights reserved.
+This program and the accompanying materials are licensed and made available under +the terms and conditions of the BSD License that accompanies this distribution. +The full text of the license may be found at +http://opensource.org/licenses/bsd-license.php. + +THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS, +WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED. + + @par Revision Reference: + This Protocol was introduced in UEFI Specification 2.0. + +**/ + +#ifndef __EFI_DHCP4_PROTOCOL_H__ +#define __EFI_DHCP4_PROTOCOL_H__ + +FILE_LICENCE ( BSD3 ); + +#define EFI_DHCP4_PROTOCOL_GUID \ + { \ + 0x8a219718, 0x4ef5, 0x4761, {0x91, 0xc8, 0xc0, 0xf0, 0x4b, 0xda, 0x9e, 0x56 } \ + } + +#define EFI_DHCP4_SERVICE_BINDING_PROTOCOL_GUID \ + { \ + 0x9d9a39d8, 0xbd42, 0x4a73, {0xa4, 0xd5, 0x8e, 0xe9, 0x4b, 0xe1, 0x13, 0x80 } \ + } + +typedef struct _EFI_DHCP4_PROTOCOL EFI_DHCP4_PROTOCOL; + + +#pragma pack(1) +typedef struct { + /// + /// DHCP option code. + /// + UINT8 OpCode; + /// + /// Length of the DHCP option data. Not present if OpCode is 0 or 255. + /// + UINT8 Length; + /// + /// Start of the DHCP option data. Not present if OpCode is 0 or 255 or if Length is zero. + /// + UINT8 Data[1]; +} EFI_DHCP4_PACKET_OPTION; +#pragma pack() + + +#pragma pack(1) +/// +/// EFI_DHCP4_PACKET defines the format of DHCPv4 packets. See RFC 2131 for more information. +/// +typedef struct { + UINT8 OpCode; + UINT8 HwType; + UINT8 HwAddrLen; + UINT8 Hops; + UINT32 Xid; + UINT16 Seconds; + UINT16 Reserved; + EFI_IPv4_ADDRESS ClientAddr; ///< Client IP address from client. + EFI_IPv4_ADDRESS YourAddr; ///< Client IP address from server. + EFI_IPv4_ADDRESS ServerAddr; ///< IP address of next server in bootstrap. + EFI_IPv4_ADDRESS GatewayAddr; ///< Relay agent IP address. + UINT8 ClientHwAddr[16]; ///< Client hardware address. + CHAR8 ServerName[64]; + CHAR8 BootFileName[128]; +}EFI_DHCP4_HEADER; +#pragma pack() + + +#pragma pack(1) +typedef struct { + /// + /// Size of the EFI_DHCP4_PACKET buffer. + /// + UINT32 Size; + /// + /// Length of the EFI_DHCP4_PACKET from the first byte of the Header field + /// to the last byte of the Option[] field. + /// + UINT32 Length; + + struct { + /// + /// DHCP packet header. + /// + EFI_DHCP4_HEADER Header; + /// + /// DHCP magik cookie in network byte order. + /// + UINT32 Magik; + /// + /// Start of the DHCP packed option data. + /// + UINT8 Option[1]; + } Dhcp4; +} EFI_DHCP4_PACKET; +#pragma pack() + + +typedef enum { + /// + /// The EFI DHCPv4 Protocol driver is stopped. + /// + Dhcp4Stopped = 0x0, + /// + /// The EFI DHCPv4 Protocol driver is inactive. + /// + Dhcp4Init = 0x1, + /// + /// The EFI DHCPv4 Protocol driver is collecting DHCP offer packets from DHCP servers. + /// + Dhcp4Selecting = 0x2, + /// + /// The EFI DHCPv4 Protocol driver has sent the request to the DHCP server and is waiting for a response. + /// + Dhcp4Requesting = 0x3, + /// + /// The DHCP configuration has completed. + /// + Dhcp4Bound = 0x4, + /// + /// The DHCP configuration is being renewed and another request has + /// been sent out, but it has not received a response from the server yet. + /// + Dhcp4Renewing = 0x5, + /// + /// The DHCP configuration has timed out and the EFI DHCPv4 + /// Protocol driver is trying to extend the lease time. + /// + Dhcp4Rebinding = 0x6, + /// + /// The EFI DHCPv4 Protocol driver was initialized with a previously + /// allocated or known IP address. + /// + Dhcp4InitReboot = 0x7, + /// + /// The EFI DHCPv4 Protocol driver is seeking to reuse the previously + /// allocated IP address by sending a request to the DHCP server. + /// + Dhcp4Rebooting = 0x8 +} EFI_DHCP4_STATE; + + +typedef enum{ + /// + /// The packet to start the configuration sequence is about to be sent. + /// + Dhcp4SendDiscover = 0x01, + /// + /// A reply packet was just received. + /// + Dhcp4RcvdOffer = 0x02, + /// + /// It is time for Dhcp4Callback to select an offer. + /// + Dhcp4SelectOffer = 0x03, + /// + /// A request packet is about to be sent. + /// + Dhcp4SendRequest = 0x04, + /// + /// A DHCPACK packet was received and will be passed to Dhcp4Callback. + /// + Dhcp4RcvdAck = 0x05, + /// + /// A DHCPNAK packet was received and will be passed to Dhcp4Callback. + /// + Dhcp4RcvdNak = 0x06, + /// + /// A decline packet is about to be sent. + /// + Dhcp4SendDecline = 0x07, + /// + /// The DHCP configuration process has completed. No packet is associated with this event. + /// + Dhcp4BoundCompleted = 0x08, + /// + /// It is time to enter the Dhcp4Renewing state and to contact the server + /// that originally issued the network address. No packet is associated with this event. + /// + Dhcp4EnterRenewing = 0x09, + /// + /// It is time to enter the Dhcp4Rebinding state and to contact any server. + /// No packet is associated with this event. + /// + Dhcp4EnterRebinding = 0x0a, + /// + /// The configured IP address was lost either because the lease has expired, + /// the user released the configuration, or a DHCPNAK packet was received in + /// the Dhcp4Renewing or Dhcp4Rebinding state. No packet is associated with this event. + /// + Dhcp4AddressLost = 0x0b, + /// + /// The DHCP process failed because a DHCPNAK packet was received or the user + /// aborted the DHCP process at a time when the configuration was not available yet. + /// No packet is associated with this event. + /// + Dhcp4Fail = 0x0c +} EFI_DHCP4_EVENT; + +/** + Callback routine. + + EFI_DHCP4_CALLBACK is provided by the consumer of the EFI DHCPv4 Protocol driver + to intercept events that occurred in the configuration process. This structure + provides advanced control of each state transition of the DHCP process. The + returned status code determines the behavior of the EFI DHCPv4 Protocol driver. + There are three possible returned values, which are described in the following + table. + + @param This The pointer to the EFI DHCPv4 Protocol instance that is used to + configure this callback function. + @param Context The pointer to the context that is initialized by + EFI_DHCP4_PROTOCOL.Configure(). + @param CurrentState The current operational state of the EFI DHCPv4 Protocol + driver. + @param Dhcp4Event The event that occurs in the current state, which usually means a + state transition. + @param Packet The DHCP packet that is going to be sent or already received. + @param NewPacket The packet that is used to replace the above Packet. + + @retval EFI_SUCCESS Tells the EFI DHCPv4 Protocol driver to continue the DHCP process. + When it is in the Dhcp4Selecting state, it tells the EFI DHCPv4 Protocol + driver to stop collecting additional packets. The driver will exit + the Dhcp4Selecting state and enter the Dhcp4Requesting state. + @retval EFI_NOT_READY Only used in the Dhcp4Selecting state. The EFI DHCPv4 Protocol + driver will continue to wait for more packets until the retry + timeout expires. + @retval EFI_ABORTED Tells the EFI DHCPv4 Protocol driver to abort the current process and + return to the Dhcp4Init or Dhcp4InitReboot state. + +**/ +typedef +EFI_STATUS +(EFIAPI *EFI_DHCP4_CALLBACK)( + IN EFI_DHCP4_PROTOCOL *This, + IN VOID *Context, + IN EFI_DHCP4_STATE CurrentState, + IN EFI_DHCP4_EVENT Dhcp4Event, + IN EFI_DHCP4_PACKET *Packet OPTIONAL, + OUT EFI_DHCP4_PACKET **NewPacket OPTIONAL + ); + +typedef struct { + /// + /// The number of times to try sending a packet during the Dhcp4SendDiscover + /// event and waiting for a response during the Dhcp4RcvdOffer event. + /// Set to zero to use the default try counts and timeout values. + /// + UINT32 DiscoverTryCount; + /// + /// The maximum amount of time (in seconds) to wait for returned packets in each + /// of the retries. Timeout values of zero will default to a timeout value + /// of one second. Set to NULL to use default timeout values. + /// + UINT32 *DiscoverTimeout; + /// + /// The number of times to try sending a packet during the Dhcp4SendRequest event + /// and waiting for a response during the Dhcp4RcvdAck event before accepting + /// failure. Set to zero to use the default try counts and timeout values. + /// + UINT32 RequestTryCount; + /// + /// The maximum amount of time (in seconds) to wait for return packets in each of the retries. + /// Timeout values of zero will default to a timeout value of one second. + /// Set to NULL to use default timeout values. + /// + UINT32 *RequestTimeout; + /// + /// For a DHCPDISCOVER, setting this parameter to the previously allocated IP + /// address will cause the EFI DHCPv4 Protocol driver to enter the Dhcp4InitReboot state. + /// And set this field to 0.0.0.0 to enter the Dhcp4Init state. + /// For a DHCPINFORM this parameter should be set to the client network address + /// which was assigned to the client during a DHCPDISCOVER. + /// + EFI_IPv4_ADDRESS ClientAddress; + /// + /// The callback function to intercept various events that occurred in + /// the DHCP configuration process. Set to NULL to ignore all those events. + /// + EFI_DHCP4_CALLBACK Dhcp4Callback; + /// + /// The pointer to the context that will be passed to Dhcp4Callback when it is called. + /// + VOID *CallbackContext; + /// + /// Number of DHCP options in the OptionList. + /// + UINT32 OptionCount; + /// + /// List of DHCP options to be included in every packet that is sent during the + /// Dhcp4SendDiscover event. Pad options are appended automatically by DHCP driver + /// in outgoing DHCP packets. If OptionList itself contains pad option, they are + /// ignored by the driver. OptionList can be freed after EFI_DHCP4_PROTOCOL.Configure() + /// returns. Ignored if OptionCount is zero. + /// + EFI_DHCP4_PACKET_OPTION **OptionList; +} EFI_DHCP4_CONFIG_DATA; + + +typedef struct { + /// + /// The EFI DHCPv4 Protocol driver operating state. + /// + EFI_DHCP4_STATE State; + /// + /// The configuration data of the current EFI DHCPv4 Protocol driver instance. + /// + EFI_DHCP4_CONFIG_DATA ConfigData; + /// + /// The client IP address that was acquired from the DHCP server. If it is zero, + /// the DHCP acquisition has not completed yet and the following fields in this structure are undefined. + /// + EFI_IPv4_ADDRESS ClientAddress; + /// + /// The local hardware address. + /// + EFI_MAC_ADDRESS ClientMacAddress; + /// + /// The server IP address that is providing the DHCP service to this client. + /// + EFI_IPv4_ADDRESS ServerAddress; + /// + /// The router IP address that was acquired from the DHCP server. + /// May be zero if the server does not offer this address. + /// + EFI_IPv4_ADDRESS RouterAddress; + /// + /// The subnet mask of the connected network that was acquired from the DHCP server. + /// + EFI_IPv4_ADDRESS SubnetMask; + /// + /// The lease time (in 1-second units) of the configured IP address. + /// The value 0xFFFFFFFF means that the lease time is infinite. + /// A default lease of 7 days is used if the DHCP server does not provide a value. + /// + UINT32 LeaseTime; + /// + /// The cached latest DHCPACK or DHCPNAK or BOOTP REPLY packet. May be NULL if no packet is cached. + /// + EFI_DHCP4_PACKET *ReplyPacket; +} EFI_DHCP4_MODE_DATA; + + +typedef struct { + /// + /// Alternate listening address. It can be a unicast, multicast, or broadcast address. + /// + EFI_IPv4_ADDRESS ListenAddress; + /// + /// The subnet mask of above listening unicast/broadcast IP address. + /// Ignored if ListenAddress is a multicast address. + /// + EFI_IPv4_ADDRESS SubnetMask; + /// + /// Alternate station source (or listening) port number. + /// If zero, then the default station port number (68) will be used. + /// + UINT16 ListenPort; +} EFI_DHCP4_LISTEN_POINT; + + +typedef struct { + /// + /// The completion status of transmitting and receiving. + /// + EFI_STATUS Status; + /// + /// If not NULL, the event that will be signaled when the collection process + /// completes. If NULL, this function will busy-wait until the collection process competes. + /// + EFI_EVENT CompletionEvent; + /// + /// The pointer to the server IP address. This address may be a unicast, multicast, or broadcast address. + /// + EFI_IPv4_ADDRESS RemoteAddress; + /// + /// The server listening port number. If zero, the default server listening port number (67) will be used. + /// + UINT16 RemotePort; + /// + /// The pointer to the gateway address to override the existing setting. + /// + EFI_IPv4_ADDRESS GatewayAddress; + /// + /// The number of entries in ListenPoints. If zero, the default station address and port number 68 are used. + /// + UINT32 ListenPointCount; + /// + /// An array of station address and port number pairs that are used as receiving filters. + /// The first entry is also used as the source address and source port of the outgoing packet. + /// + EFI_DHCP4_LISTEN_POINT *ListenPoints; + /// + /// The number of seconds to collect responses. Zero is invalid. + /// + UINT32 TimeoutValue; + /// + /// The pointer to the packet to be transmitted. + /// + EFI_DHCP4_PACKET *Packet; + /// + /// Number of received packets. + /// + UINT32 ResponseCount; + /// + /// The pointer to the allocated list of received packets. + /// + EFI_DHCP4_PACKET *ResponseList; +} EFI_DHCP4_TRANSMIT_RECEIVE_TOKEN; + + +/** + Returns the current operating mode and cached data packet for the EFI DHCPv4 Protocol driver. + + The GetModeData() function returns the current operating mode and cached data + packet for the EFI DHCPv4 Protocol driver. + + @param This The pointer to the EFI_DHCP4_PROTOCOL instance. + @param Dhcp4ModeData The pointer to storage for the EFI_DHCP4_MODE_DATA structure. + + @retval EFI_SUCCESS The mode data was returned. + @retval EFI_INVALID_PARAMETER This is NULL. + +**/ +typedef +EFI_STATUS +(EFIAPI *EFI_DHCP4_GET_MODE_DATA)( + IN EFI_DHCP4_PROTOCOL *This, + OUT EFI_DHCP4_MODE_DATA *Dhcp4ModeData + ); + +/** + Initializes, changes, or resets the operational settings for the EFI DHCPv4 Protocol driver. + + The Configure() function is used to initialize, change, or reset the operational + settings of the EFI DHCPv4 Protocol driver for the communication device on which + the EFI DHCPv4 Service Binding Protocol is installed. This function can be + successfully called only if both of the following are true: + * This instance of the EFI DHCPv4 Protocol driver is in the Dhcp4Stopped, Dhcp4Init, + Dhcp4InitReboot, or Dhcp4Bound states. + * No other EFI DHCPv4 Protocol driver instance that is controlled by this EFI + DHCPv4 Service Binding Protocol driver instance has configured this EFI DHCPv4 + Protocol driver. + When this driver is in the Dhcp4Stopped state, it can transfer into one of the + following two possible initial states: + * Dhcp4Init + * Dhcp4InitReboot. + The driver can transfer into these states by calling Configure() with a non-NULL + Dhcp4CfgData. The driver will transfer into the appropriate state based on the + supplied client network address in the ClientAddress parameter and DHCP options + in the OptionList parameter as described in RFC 2131. + When Configure() is called successfully while Dhcp4CfgData is set to NULL, the + default configuring data will be reset in the EFI DHCPv4 Protocol driver and + the state of the EFI DHCPv4 Protocol driver will not be changed. If one instance + wants to make it possible for another instance to configure the EFI DHCPv4 Protocol + driver, it must call this function with Dhcp4CfgData set to NULL. + + @param This The pointer to the EFI_DHCP4_PROTOCOL instance. + @param Dhcp4CfgData The pointer to the EFI_DHCP4_CONFIG_DATA. + + @retval EFI_SUCCESS The EFI DHCPv4 Protocol driver is now in the Dhcp4Init or + Dhcp4InitReboot state, if the original state of this driver + was Dhcp4Stopped, Dhcp4Init,Dhcp4InitReboot, or Dhcp4Bound + and the value of Dhcp4CfgData was not NULL. + Otherwise, the state was left unchanged. + @retval EFI_ACCESS_DENIED This instance of the EFI DHCPv4 Protocol driver was not in the + Dhcp4Stopped, Dhcp4Init, Dhcp4InitReboot, or Dhcp4Bound state; + Or onother instance of this EFI DHCPv4 Protocol driver is already + in a valid configured state. + @retval EFI_INVALID_PARAMETER One or more following conditions are TRUE: + This is NULL. + DiscoverTryCount > 0 and DiscoverTimeout is NULL + RequestTryCount > 0 and RequestTimeout is NULL. + OptionCount >0 and OptionList is NULL. + ClientAddress is not a valid unicast address. + @retval EFI_OUT_OF_RESOURCES Required system resources could not be allocated. + @retval EFI_DEVICE_ERROR An unexpected system or network error occurred. + +**/ +typedef +EFI_STATUS +(EFIAPI *EFI_DHCP4_CONFIGURE)( + IN EFI_DHCP4_PROTOCOL *This, + IN EFI_DHCP4_CONFIG_DATA *Dhcp4CfgData OPTIONAL + ); + + +/** + Starts the DHCP configuration process. + + The Start() function starts the DHCP configuration process. This function can + be called only when the EFI DHCPv4 Protocol driver is in the Dhcp4Init or + Dhcp4InitReboot state. + If the DHCP process completes successfully, the state of the EFI DHCPv4 Protocol + driver will be transferred through Dhcp4Selecting and Dhcp4Requesting to the + Dhcp4Bound state. The CompletionEvent will then be signaled if it is not NULL. + If the process aborts, either by the user or by some unexpected network error, + the state is restored to the Dhcp4Init state. The Start() function can be called + again to restart the process. + Refer to RFC 2131 for precise state transitions during this process. At the + time when each event occurs in this process, the callback function that was set + by EFI_DHCP4_PROTOCOL.Configure() will be called and the user can take this + opportunity to control the process. + + @param This The pointer to the EFI_DHCP4_PROTOCOL instance. + @param CompletionEvent If not NULL, it indicates the event that will be signaled when the + EFI DHCPv4 Protocol driver is transferred into the + Dhcp4Bound state or when the DHCP process is aborted. + EFI_DHCP4_PROTOCOL.GetModeData() can be called to + check the completion status. If NULL, + EFI_DHCP4_PROTOCOL.Start() will wait until the driver + is transferred into the Dhcp4Bound state or the process fails. + + @retval EFI_SUCCESS The DHCP configuration process has started, or it has completed + when CompletionEvent is NULL. + @retval EFI_NOT_STARTED The EFI DHCPv4 Protocol driver is in the Dhcp4Stopped + state. EFI_DHCP4_PROTOCOL. Configure() needs to be called. + @retval EFI_INVALID_PARAMETER This is NULL. + @retval EFI_OUT_OF_RESOURCES Required system resources could not be allocated. + @retval EFI_TIMEOUT The DHCP configuration process failed because no response was + received from the server within the specified timeout value. + @retval EFI_ABORTED The user aborted the DHCP process. + @retval EFI_ALREADY_STARTED Some other EFI DHCPv4 Protocol instance already started the + DHCP process. + @retval EFI_DEVICE_ERROR An unexpected system or network error occurred. + @retval EFI_NO_MEDIA There was a media error. + +**/ +typedef +EFI_STATUS +(EFIAPI *EFI_DHCP4_START)( + IN EFI_DHCP4_PROTOCOL *This, + IN EFI_EVENT CompletionEvent OPTIONAL + ); + +/** + Extends the lease time by sending a request packet. + + The RenewRebind() function is used to manually extend the lease time when the + EFI DHCPv4 Protocol driver is in the Dhcp4Bound state, and the lease time has + not expired yet. This function will send a request packet to the previously + found server (or to any server when RebindRequest is TRUE) and transfer the + state into the Dhcp4Renewing state (or Dhcp4Rebinding when RebindingRequest is + TRUE). When a response is received, the state is returned to Dhcp4Bound. + If no response is received before the try count is exceeded (the RequestTryCount + field that is specified in EFI_DHCP4_CONFIG_DATA) but before the lease time that + was issued by the previous server expires, the driver will return to the Dhcp4Bound + state, and the previous configuration is restored. The outgoing and incoming packets + can be captured by the EFI_DHCP4_CALLBACK function. + + @param This The pointer to the EFI_DHCP4_PROTOCOL instance. + @param RebindRequest If TRUE, this function broadcasts the request packets and enters + the Dhcp4Rebinding state. Otherwise, it sends a unicast + request packet and enters the Dhcp4Renewing state. + @param CompletionEvent If not NULL, this event is signaled when the renew/rebind phase + completes or some error occurs. + EFI_DHCP4_PROTOCOL.GetModeData() can be called to + check the completion status. If NULL, + EFI_DHCP4_PROTOCOL.RenewRebind() will busy-wait + until the DHCP process finishes. + + @retval EFI_SUCCESS The EFI DHCPv4 Protocol driver is now in the + Dhcp4Renewing state or is back to the Dhcp4Bound state. + @retval EFI_NOT_STARTED The EFI DHCPv4 Protocol driver is in the Dhcp4Stopped + state. EFI_DHCP4_PROTOCOL.Configure() needs to + be called. + @retval EFI_INVALID_PARAMETER This is NULL. + @retval EFI_TIMEOUT There was no response from the server when the try count was + exceeded. + @retval EFI_ACCESS_DENIED The driver is not in the Dhcp4Bound state. + @retval EFI_DEVICE_ERROR An unexpected system or network error occurred. + +**/ +typedef +EFI_STATUS +(EFIAPI *EFI_DHCP4_RENEW_REBIND)( + IN EFI_DHCP4_PROTOCOL *This, + IN BOOLEAN RebindRequest, + IN EFI_EVENT CompletionEvent OPTIONAL + ); + +/** + Releases the current address configuration. + + The Release() function releases the current configured IP address by doing either + of the following: + * Sending a DHCPRELEASE packet when the EFI DHCPv4 Protocol driver is in the + Dhcp4Bound state + * Setting the previously assigned IP address that was provided with the + EFI_DHCP4_PROTOCOL.Configure() function to 0.0.0.0 when the driver is in + Dhcp4InitReboot state + After a successful call to this function, the EFI DHCPv4 Protocol driver returns + to the Dhcp4Init state, and any subsequent incoming packets will be discarded silently. + + @param This The pointer to the EFI_DHCP4_PROTOCOL instance. + + @retval EFI_SUCCESS The EFI DHCPv4 Protocol driver is now in the Dhcp4Init phase. + @retval EFI_INVALID_PARAMETER This is NULL. + @retval EFI_ACCESS_DENIED The EFI DHCPv4 Protocol driver is not Dhcp4InitReboot state. + @retval EFI_DEVICE_ERROR An unexpected system or network error occurred. + +**/ +typedef +EFI_STATUS +(EFIAPI *EFI_DHCP4_RELEASE)( + IN EFI_DHCP4_PROTOCOL *This + ); + +/** + Stops the current address configuration. + + The Stop() function is used to stop the DHCP configuration process. After this + function is called successfully, the EFI DHCPv4 Protocol driver is transferred + into the Dhcp4Stopped state. EFI_DHCP4_PROTOCOL.Configure() needs to be called + before DHCP configuration process can be started again. This function can be + called when the EFI DHCPv4 Protocol driver is in any state. + + @param This The pointer to the EFI_DHCP4_PROTOCOL instance. + + @retval EFI_SUCCESS The EFI DHCPv4 Protocol driver is now in the Dhcp4Stopped phase. + @retval EFI_INVALID_PARAMETER This is NULL. + +**/ +typedef +EFI_STATUS +(EFIAPI *EFI_DHCP4_STOP)( + IN EFI_DHCP4_PROTOCOL *This + ); + +/** + Builds a DHCP packet, given the options to be appended or deleted or replaced. + + The Build() function is used to assemble a new packet from the original packet + by replacing or deleting existing options or appending new options. This function + does not change any state of the EFI DHCPv4 Protocol driver and can be used at + any time. + + @param This The pointer to the EFI_DHCP4_PROTOCOL instance. + @param SeedPacket Initial packet to be used as a base for building new packet. + @param DeleteCount Number of opcodes in the DeleteList. + @param DeleteList List of opcodes to be deleted from the seed packet. + Ignored if DeleteCount is zero. + @param AppendCount Number of entries in the OptionList. + @param AppendList The pointer to a DHCP option list to be appended to SeedPacket. + If SeedPacket also contains options in this list, they are + replaced by new options (except pad option). Ignored if + AppendCount is zero. Type EFI_DHCP4_PACKET_OPTION + @param NewPacket The pointer to storage for the pointer to the new allocated packet. + Use the EFI Boot Service FreePool() on the resulting pointer + when done with the packet. + + @retval EFI_SUCCESS The new packet was built. + @retval EFI_OUT_OF_RESOURCES Storage for the new packet could not be allocated. + @retval EFI_INVALID_PARAMETER One or more of the following conditions is TRUE: + This is NULL. + SeedPacket is NULL. + SeedPacket is not a well-formed DHCP packet. + AppendCount is not zero and AppendList is NULL. + DeleteCount is not zero and DeleteList is NULL. + NewPacket is NULL + Both DeleteCount and AppendCount are zero and + NewPacket is not NULL. + +**/ +typedef +EFI_STATUS +(EFIAPI *EFI_DHCP4_BUILD)( + IN EFI_DHCP4_PROTOCOL *This, + IN EFI_DHCP4_PACKET *SeedPacket, + IN UINT32 DeleteCount, + IN UINT8 *DeleteList OPTIONAL, + IN UINT32 AppendCount, + IN EFI_DHCP4_PACKET_OPTION *AppendList[] OPTIONAL, + OUT EFI_DHCP4_PACKET **NewPacket + ); + + +/** + Transmits a DHCP formatted packet and optionally waits for responses. + + The TransmitReceive() function is used to transmit a DHCP packet and optionally + wait for the response from servers. This function does not change the state of + the EFI DHCPv4 Protocol driver. It can be used at any time because of this. + + @param This The pointer to the EFI_DHCP4_PROTOCOL instance. + @param Token The pointer to the EFI_DHCP4_TRANSMIT_RECEIVE_TOKEN structure. + + @retval EFI_SUCCESS The packet was successfully queued for transmission. + @retval EFI_INVALID_PARAMETER One or more of the following conditions is TRUE: + This is NULL. + Token.RemoteAddress is zero. + Token.Packet is NULL. + Token.Packet is not a well-formed DHCP packet. + The transaction ID in Token.Packet is in use by another DHCP process. + @retval EFI_NOT_READY The previous call to this function has not finished yet. Try to call + this function after collection process completes. + @retval EFI_NO_MAPPING The default station address is not available yet. + @retval EFI_OUT_OF_RESOURCES Required system resources could not be allocated. + @retval EFI_UNSUPPORTED The implementation doesn't support this function + @retval Others Some other unexpected error occurred. + +**/ +typedef +EFI_STATUS +(EFIAPI *EFI_DHCP4_TRANSMIT_RECEIVE)( + IN EFI_DHCP4_PROTOCOL *This, + IN EFI_DHCP4_TRANSMIT_RECEIVE_TOKEN *Token + ); + + +/** + Parses the packed DHCP option data. + + The Parse() function is used to retrieve the option list from a DHCP packet. + If *OptionCount isn't zero, and there is enough space for all the DHCP options + in the Packet, each element of PacketOptionList is set to point to somewhere in + the Packet->Dhcp4.Option where a new DHCP option begins. If RFC3396 is supported, + the caller should reassemble the parsed DHCP options to get the final result. + If *OptionCount is zero or there isn't enough space for all of them, the number + of DHCP options in the Packet is returned in OptionCount. + + @param This The pointer to the EFI_DHCP4_PROTOCOL instance. + @param Packet The pointer to packet to be parsed. + @param OptionCount On input, the number of entries in the PacketOptionList. + On output, the number of entries that were written into the + PacketOptionList. + @param PacketOptionList A list of packet option entries to be filled in. End option or pad + options are not included. + + @retval EFI_SUCCESS The packet was successfully parsed. + @retval EFI_INVALID_PARAMETER One or more of the following conditions is TRUE: + This is NULL. + The packet is NULL. + The packet is not a well-formed DHCP packet. + OptionCount is NULL. + @retval EFI_BUFFER_TOO_SMALL One or more of the following conditions is TRUE: + 1) *OptionCount is smaller than the number of options that + were found in the Packet. + 2) PacketOptionList is NULL. + @retval EFI_OUT_OF_RESOURCE The packet failed to parse because of a resource shortage. + +**/ +typedef +EFI_STATUS +(EFIAPI *EFI_DHCP4_PARSE)( + IN EFI_DHCP4_PROTOCOL *This, + IN EFI_DHCP4_PACKET *Packet, + IN OUT UINT32 *OptionCount, + OUT EFI_DHCP4_PACKET_OPTION *PacketOptionList[] OPTIONAL + ); + +/// +/// This protocol is used to collect configuration information for the EFI IPv4 Protocol drivers +/// and to provide DHCPv4 server and PXE boot server discovery services. +/// +struct _EFI_DHCP4_PROTOCOL { + EFI_DHCP4_GET_MODE_DATA GetModeData; + EFI_DHCP4_CONFIGURE Configure; + EFI_DHCP4_START Start; + EFI_DHCP4_RENEW_REBIND RenewRebind; + EFI_DHCP4_RELEASE Release; + EFI_DHCP4_STOP Stop; + EFI_DHCP4_BUILD Build; + EFI_DHCP4_TRANSMIT_RECEIVE TransmitReceive; + EFI_DHCP4_PARSE Parse; +}; + +extern EFI_GUID gEfiDhcp4ProtocolGuid; +extern EFI_GUID gEfiDhcp4ServiceBindingProtocolGuid; + +#endif diff --git a/src/include/ipxe/efi/Protocol/Ip4.h b/src/include/ipxe/efi/Protocol/Ip4.h new file mode 100644 index 000000000..f174c0cfb --- /dev/null +++ b/src/include/ipxe/efi/Protocol/Ip4.h @@ -0,0 +1,614 @@ +/** @file + This file defines the EFI IPv4 (Internet Protocol version 4) + Protocol interface. It is split into the following three main + sections: + - EFI IPv4 Service Binding Protocol + - EFI IPv4 Variable (deprecated in UEFI 2.4B) + - EFI IPv4 Protocol. + The EFI IPv4 Protocol provides basic network IPv4 packet I/O services, + which includes support foR a subset of the Internet Control Message + Protocol (ICMP) and may include support for the Internet Group Management + Protocol (IGMP). + +Copyright (c) 2006 - 2014, Intel Corporation. All rights reserved.
+This program and the accompanying materials are licensed and made available under +the terms and conditions of the BSD License that accompanies this distribution. +The full text of the license may be found at +http://opensource.org/licenses/bsd-license.php. + +THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS, +WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED. + + @par Revision Reference: + This Protocol is introduced in UEFI Specification 2.0. + +**/ + +#ifndef __EFI_IP4_PROTOCOL_H__ +#define __EFI_IP4_PROTOCOL_H__ + +FILE_LICENCE ( BSD3 ); + +#include + +#define EFI_IP4_SERVICE_BINDING_PROTOCOL_GUID \ + { \ + 0xc51711e7, 0xb4bf, 0x404a, {0xbf, 0xb8, 0x0a, 0x04, 0x8e, 0xf1, 0xff, 0xe4 } \ + } + +#define EFI_IP4_PROTOCOL_GUID \ + { \ + 0x41d94cd2, 0x35b6, 0x455a, {0x82, 0x58, 0xd4, 0xe5, 0x13, 0x34, 0xaa, 0xdd } \ + } + +typedef struct _EFI_IP4_PROTOCOL EFI_IP4_PROTOCOL; + +/// +/// EFI_IP4_ADDRESS_PAIR is deprecated in the UEFI 2.4B and should not be used any more. +/// The definition in here is only present to provide backwards compatability. +/// +typedef struct { + EFI_HANDLE InstanceHandle; + EFI_IPv4_ADDRESS Ip4Address; + EFI_IPv4_ADDRESS SubnetMask; +} EFI_IP4_ADDRESS_PAIR; + +/// +/// EFI_IP4_VARIABLE_DATA is deprecated in the UEFI 2.4B and should not be used any more. +/// The definition in here is only present to provide backwards compatability. +/// +typedef struct { + EFI_HANDLE DriverHandle; + UINT32 AddressCount; + EFI_IP4_ADDRESS_PAIR AddressPairs[1]; +} EFI_IP4_VARIABLE_DATA; + +typedef struct { + /// + /// The default IPv4 protocol packets to send and receive. Ignored + /// when AcceptPromiscuous is TRUE. + /// + UINT8 DefaultProtocol; + /// + /// Set to TRUE to receive all IPv4 packets that get through the receive filters. + /// Set to FALSE to receive only the DefaultProtocol IPv4 + /// packets that get through the receive filters. + /// + BOOLEAN AcceptAnyProtocol; + /// + /// Set to TRUE to receive ICMP error report packets. Ignored when + /// AcceptPromiscuous or AcceptAnyProtocol is TRUE. + /// + BOOLEAN AcceptIcmpErrors; + /// + /// Set to TRUE to receive broadcast IPv4 packets. Ignored when + /// AcceptPromiscuous is TRUE. + /// Set to FALSE to stop receiving broadcast IPv4 packets. + /// + BOOLEAN AcceptBroadcast; + /// + /// Set to TRUE to receive all IPv4 packets that are sent to any + /// hardware address or any protocol address. + /// Set to FALSE to stop receiving all promiscuous IPv4 packets + /// + BOOLEAN AcceptPromiscuous; + /// + /// Set to TRUE to use the default IPv4 address and default routing table. + /// + BOOLEAN UseDefaultAddress; + /// + /// The station IPv4 address that will be assigned to this EFI IPv4Protocol instance. + /// + EFI_IPv4_ADDRESS StationAddress; + /// + /// The subnet address mask that is associated with the station address. + /// + EFI_IPv4_ADDRESS SubnetMask; + /// + /// TypeOfService field in transmitted IPv4 packets. + /// + UINT8 TypeOfService; + /// + /// TimeToLive field in transmitted IPv4 packets. + /// + UINT8 TimeToLive; + /// + /// State of the DoNotFragment bit in transmitted IPv4 packets. + /// + BOOLEAN DoNotFragment; + /// + /// Set to TRUE to send and receive unformatted packets. The other + /// IPv4 receive filters are still applied. Fragmentation is disabled for RawData mode. + /// + BOOLEAN RawData; + /// + /// The timer timeout value (number of microseconds) for the + /// receive timeout event to be associated with each assembled + /// packet. Zero means do not drop assembled packets. + /// + UINT32 ReceiveTimeout; + /// + /// The timer timeout value (number of microseconds) for the + /// transmit timeout event to be associated with each outgoing + /// packet. Zero means do not drop outgoing packets. + /// + UINT32 TransmitTimeout; +} EFI_IP4_CONFIG_DATA; + + +typedef struct { + EFI_IPv4_ADDRESS SubnetAddress; + EFI_IPv4_ADDRESS SubnetMask; + EFI_IPv4_ADDRESS GatewayAddress; +} EFI_IP4_ROUTE_TABLE; + +typedef struct { + UINT8 Type; + UINT8 Code; +} EFI_IP4_ICMP_TYPE; + +typedef struct { + /// + /// Set to TRUE after this EFI IPv4 Protocol instance has been successfully configured. + /// + BOOLEAN IsStarted; + /// + /// The maximum packet size, in bytes, of the packet which the upper layer driver could feed. + /// + UINT32 MaxPacketSize; + /// + /// Current configuration settings. + /// + EFI_IP4_CONFIG_DATA ConfigData; + /// + /// Set to TRUE when the EFI IPv4 Protocol instance has a station address and subnet mask. + /// + BOOLEAN IsConfigured; + /// + /// Number of joined multicast groups. + /// + UINT32 GroupCount; + /// + /// List of joined multicast group addresses. + /// + EFI_IPv4_ADDRESS *GroupTable; + /// + /// Number of entries in the routing table. + /// + UINT32 RouteCount; + /// + /// Routing table entries. + /// + EFI_IP4_ROUTE_TABLE *RouteTable; + /// + /// Number of entries in the supported ICMP types list. + /// + UINT32 IcmpTypeCount; + /// + /// Array of ICMP types and codes that are supported by this EFI IPv4 Protocol driver + /// + EFI_IP4_ICMP_TYPE *IcmpTypeList; +} EFI_IP4_MODE_DATA; + +#pragma pack(1) + +typedef struct { + UINT8 HeaderLength:4; + UINT8 Version:4; + UINT8 TypeOfService; + UINT16 TotalLength; + UINT16 Identification; + UINT16 Fragmentation; + UINT8 TimeToLive; + UINT8 Protocol; + UINT16 Checksum; + EFI_IPv4_ADDRESS SourceAddress; + EFI_IPv4_ADDRESS DestinationAddress; +} EFI_IP4_HEADER; +#pragma pack() + + +typedef struct { + UINT32 FragmentLength; + VOID *FragmentBuffer; +} EFI_IP4_FRAGMENT_DATA; + + +typedef struct { + EFI_TIME TimeStamp; + EFI_EVENT RecycleSignal; + UINT32 HeaderLength; + EFI_IP4_HEADER *Header; + UINT32 OptionsLength; + VOID *Options; + UINT32 DataLength; + UINT32 FragmentCount; + EFI_IP4_FRAGMENT_DATA FragmentTable[1]; +} EFI_IP4_RECEIVE_DATA; + + +typedef struct { + EFI_IPv4_ADDRESS SourceAddress; + EFI_IPv4_ADDRESS GatewayAddress; + UINT8 Protocol; + UINT8 TypeOfService; + UINT8 TimeToLive; + BOOLEAN DoNotFragment; +} EFI_IP4_OVERRIDE_DATA; + +typedef struct { + EFI_IPv4_ADDRESS DestinationAddress; + EFI_IP4_OVERRIDE_DATA *OverrideData; //OPTIONAL + UINT32 OptionsLength; //OPTIONAL + VOID *OptionsBuffer; //OPTIONAL + UINT32 TotalDataLength; + UINT32 FragmentCount; + EFI_IP4_FRAGMENT_DATA FragmentTable[1]; +} EFI_IP4_TRANSMIT_DATA; + +typedef struct { + /// + /// This Event will be signaled after the Status field is updated + /// by the EFI IPv4 Protocol driver. The type of Event must be + /// EFI_NOTIFY_SIGNAL. The Task Priority Level (TPL) of + /// Event must be lower than or equal to TPL_CALLBACK. + /// + EFI_EVENT Event; + /// + /// The status that is returned to the caller at the end of the operation + /// to indicate whether this operation completed successfully. + /// + EFI_STATUS Status; + union { + /// + /// When this token is used for receiving, RxData is a pointer to the EFI_IP4_RECEIVE_DATA. + /// + EFI_IP4_RECEIVE_DATA *RxData; + /// + /// When this token is used for transmitting, TxData is a pointer to the EFI_IP4_TRANSMIT_DATA. + /// + EFI_IP4_TRANSMIT_DATA *TxData; + } Packet; +} EFI_IP4_COMPLETION_TOKEN; + +/** + Gets the current operational settings for this instance of the EFI IPv4 Protocol driver. + + The GetModeData() function returns the current operational mode data for this + driver instance. The data fields in EFI_IP4_MODE_DATA are read only. This + function is used optionally to retrieve the operational mode data of underlying + networks or drivers. + + @param This The pointer to the EFI_IP4_PROTOCOL instance. + @param Ip4ModeData The pointer to the EFI IPv4 Protocol mode data structure. + @param MnpConfigData The pointer to the managed network configuration data structure. + @param SnpModeData The pointer to the simple network mode data structure. + + @retval EFI_SUCCESS The operation completed successfully. + @retval EFI_INVALID_PARAMETER This is NULL. + @retval EFI_OUT_OF_RESOURCES The required mode data could not be allocated. + +**/ +typedef +EFI_STATUS +(EFIAPI *EFI_IP4_GET_MODE_DATA)( + IN CONST EFI_IP4_PROTOCOL *This, + OUT EFI_IP4_MODE_DATA *Ip4ModeData OPTIONAL, + OUT EFI_MANAGED_NETWORK_CONFIG_DATA *MnpConfigData OPTIONAL, + OUT EFI_SIMPLE_NETWORK_MODE *SnpModeData OPTIONAL + ); + +/** + Assigns an IPv4 address and subnet mask to this EFI IPv4 Protocol driver instance. + + The Configure() function is used to set, change, or reset the operational + parameters and filter settings for this EFI IPv4 Protocol instance. Until these + parameters have been set, no network traffic can be sent or received by this + instance. Once the parameters have been reset (by calling this function with + IpConfigData set to NULL), no more traffic can be sent or received until these + parameters have been set again. Each EFI IPv4 Protocol instance can be started + and stopped independently of each other by enabling or disabling their receive + filter settings with the Configure() function. + + When IpConfigData.UseDefaultAddress is set to FALSE, the new station address will + be appended as an alias address into the addresses list in the EFI IPv4 Protocol + driver. While set to TRUE, Configure() will trigger the EFI_IP4_CONFIG_PROTOCOL + to retrieve the default IPv4 address if it is not available yet. Clients could + frequently call GetModeData() to check the status to ensure that the default IPv4 + address is ready. + + If operational parameters are reset or changed, any pending transmit and receive + requests will be cancelled. Their completion token status will be set to EFI_ABORTED + and their events will be signaled. + + @param This The pointer to the EFI_IP4_PROTOCOL instance. + @param IpConfigData The pointer to the EFI IPv4 Protocol configuration data structure. + + @retval EFI_SUCCESS The driver instance was successfully opened. + @retval EFI_NO_MAPPING When using the default address, configuration (DHCP, BOOTP, + RARP, etc.) is not finished yet. + @retval EFI_INVALID_PARAMETER One or more of the following conditions is TRUE: + This is NULL. + IpConfigData.StationAddress is not a unicast IPv4 address. + IpConfigData.SubnetMask is not a valid IPv4 subnet + @retval EFI_UNSUPPORTED One or more of the following conditions is TRUE: + A configuration protocol (DHCP, BOOTP, RARP, etc.) could + not be located when clients choose to use the default IPv4 + address. This EFI IPv4 Protocol implementation does not + support this requested filter or timeout setting. + @retval EFI_OUT_OF_RESOURCES The EFI IPv4 Protocol driver instance data could not be allocated. + @retval EFI_ALREADY_STARTED The interface is already open and must be stopped before the + IPv4 address or subnet mask can be changed. The interface must + also be stopped when switching to/from raw packet mode. + @retval EFI_DEVICE_ERROR An unexpected system or network error occurred. The EFI IPv4 + Protocol driver instance is not opened. + +**/ +typedef +EFI_STATUS +(EFIAPI *EFI_IP4_CONFIGURE)( + IN EFI_IP4_PROTOCOL *This, + IN EFI_IP4_CONFIG_DATA *IpConfigData OPTIONAL + ); + +/** + Joins and leaves multicast groups. + + The Groups() function is used to join and leave multicast group sessions. Joining + a group will enable reception of matching multicast packets. Leaving a group will + disable the multicast packet reception. + + If JoinFlag is FALSE and GroupAddress is NULL, all joined groups will be left. + + @param This The pointer to the EFI_IP4_PROTOCOL instance. + @param JoinFlag Set to TRUE to join the multicast group session and FALSE to leave. + @param GroupAddress The pointer to the IPv4 multicast address. + + @retval EFI_SUCCESS The operation completed successfully. + @retval EFI_INVALID_PARAMETER One or more of the following is TRUE: + - This is NULL. + - JoinFlag is TRUE and GroupAddress is NULL. + - GroupAddress is not NULL and *GroupAddress is + not a multicast IPv4 address. + @retval EFI_NOT_STARTED This instance has not been started. + @retval EFI_NO_MAPPING When using the default address, configuration (DHCP, BOOTP, + RARP, etc.) is not finished yet. + @retval EFI_OUT_OF_RESOURCES System resources could not be allocated. + @retval EFI_UNSUPPORTED This EFI IPv4 Protocol implementation does not support multicast groups. + @retval EFI_ALREADY_STARTED The group address is already in the group table (when + JoinFlag is TRUE). + @retval EFI_NOT_FOUND The group address is not in the group table (when JoinFlag is FALSE). + @retval EFI_DEVICE_ERROR An unexpected system or network error occurred. + +**/ +typedef +EFI_STATUS +(EFIAPI *EFI_IP4_GROUPS)( + IN EFI_IP4_PROTOCOL *This, + IN BOOLEAN JoinFlag, + IN EFI_IPv4_ADDRESS *GroupAddress OPTIONAL + ); + +/** + Adds and deletes routing table entries. + + The Routes() function adds a route to or deletes a route from the routing table. + + Routes are determined by comparing the SubnetAddress with the destination IPv4 + address arithmetically AND-ed with the SubnetMask. The gateway address must be + on the same subnet as the configured station address. + + The default route is added with SubnetAddress and SubnetMask both set to 0.0.0.0. + The default route matches all destination IPv4 addresses that do not match any + other routes. + + A GatewayAddress that is zero is a nonroute. Packets are sent to the destination + IP address if it can be found in the ARP cache or on the local subnet. One automatic + nonroute entry will be inserted into the routing table for outgoing packets that + are addressed to a local subnet (gateway address of 0.0.0.0). + + Each EFI IPv4 Protocol instance has its own independent routing table. Those EFI + IPv4 Protocol instances that use the default IPv4 address will also have copies + of the routing table that was provided by the EFI_IP4_CONFIG_PROTOCOL, and these + copies will be updated whenever the EIF IPv4 Protocol driver reconfigures its + instances. As a result, client modification to the routing table will be lost. + + @param This The pointer to the EFI_IP4_PROTOCOL instance. + @param DeleteRoute Set to TRUE to delete this route from the routing table. Set to + FALSE to add this route to the routing table. SubnetAddress + and SubnetMask are used as the key to each route entry. + @param SubnetAddress The address of the subnet that needs to be routed. + @param SubnetMask The subnet mask of SubnetAddress. + @param GatewayAddress The unicast gateway IPv4 address for this route. + + @retval EFI_SUCCESS The operation completed successfully. + @retval EFI_NOT_STARTED The driver instance has not been started. + @retval EFI_NO_MAPPING When using the default address, configuration (DHCP, BOOTP, + RARP, etc.) is not finished yet. + @retval EFI_INVALID_PARAMETER One or more of the following conditions is TRUE: + - This is NULL. + - SubnetAddress is NULL. + - SubnetMask is NULL. + - GatewayAddress is NULL. + - *SubnetAddress is not a valid subnet address. + - *SubnetMask is not a valid subnet mask. + - *GatewayAddress is not a valid unicast IPv4 address. + @retval EFI_OUT_OF_RESOURCES Could not add the entry to the routing table. + @retval EFI_NOT_FOUND This route is not in the routing table (when DeleteRoute is TRUE). + @retval EFI_ACCESS_DENIED The route is already defined in the routing table (when + DeleteRoute is FALSE). + +**/ +typedef +EFI_STATUS +(EFIAPI *EFI_IP4_ROUTES)( + IN EFI_IP4_PROTOCOL *This, + IN BOOLEAN DeleteRoute, + IN EFI_IPv4_ADDRESS *SubnetAddress, + IN EFI_IPv4_ADDRESS *SubnetMask, + IN EFI_IPv4_ADDRESS *GatewayAddress + ); + +/** + Places outgoing data packets into the transmit queue. + + The Transmit() function places a sending request in the transmit queue of this + EFI IPv4 Protocol instance. Whenever the packet in the token is sent out or some + errors occur, the event in the token will be signaled and the status is updated. + + @param This The pointer to the EFI_IP4_PROTOCOL instance. + @param Token The pointer to the transmit token. + + @retval EFI_SUCCESS The data has been queued for transmission. + @retval EFI_NOT_STARTED This instance has not been started. + @retval EFI_NO_MAPPING When using the default address, configuration (DHCP, BOOTP, + RARP, etc.) is not finished yet. + @retval EFI_INVALID_PARAMETER One or more pameters are invalid. + @retval EFI_ACCESS_DENIED The transmit completion token with the same Token.Event + was already in the transmit queue. + @retval EFI_NOT_READY The completion token could not be queued because the transmit + queue is full. + @retval EFI_NOT_FOUND Not route is found to destination address. + @retval EFI_OUT_OF_RESOURCES Could not queue the transmit data. + @retval EFI_BUFFER_TOO_SMALL Token.Packet.TxData.TotalDataLength is too + short to transmit. + @retval EFI_BAD_BUFFER_SIZE The length of the IPv4 header + option length + total data length is + greater than MTU (or greater than the maximum packet size if + Token.Packet.TxData.OverrideData. + DoNotFragment is TRUE.) + +**/ +typedef +EFI_STATUS +(EFIAPI *EFI_IP4_TRANSMIT)( + IN EFI_IP4_PROTOCOL *This, + IN EFI_IP4_COMPLETION_TOKEN *Token + ); + +/** + Places a receiving request into the receiving queue. + + The Receive() function places a completion token into the receive packet queue. + This function is always asynchronous. + + The Token.Event field in the completion token must be filled in by the caller + and cannot be NULL. When the receive operation completes, the EFI IPv4 Protocol + driver updates the Token.Status and Token.Packet.RxData fields and the Token.Event + is signaled. + + @param This The pointer to the EFI_IP4_PROTOCOL instance. + @param Token The pointer to a token that is associated with the receive data descriptor. + + @retval EFI_SUCCESS The receive completion token was cached. + @retval EFI_NOT_STARTED This EFI IPv4 Protocol instance has not been started. + @retval EFI_NO_MAPPING When using the default address, configuration (DHCP, BOOTP, RARP, etc.) + is not finished yet. + @retval EFI_INVALID_PARAMETER One or more of the following conditions is TRUE: + - This is NULL. + - Token is NULL. + - Token.Event is NULL. + @retval EFI_OUT_OF_RESOURCES The receive completion token could not be queued due to a lack of system + resources (usually memory). + @retval EFI_DEVICE_ERROR An unexpected system or network error occurred. + The EFI IPv4 Protocol instance has been reset to startup defaults. + @retval EFI_ACCESS_DENIED The receive completion token with the same Token.Event was already + in the receive queue. + @retval EFI_NOT_READY The receive request could not be queued because the receive queue is full. + @retval EFI_ICMP_ERROR An ICMP error packet was received. + +**/ +typedef +EFI_STATUS +(EFIAPI *EFI_IP4_RECEIVE)( + IN EFI_IP4_PROTOCOL *This, + IN EFI_IP4_COMPLETION_TOKEN *Token + ); + +/** + Abort an asynchronous transmit or receive request. + + The Cancel() function is used to abort a pending transmit or receive request. + If the token is in the transmit or receive request queues, after calling this + function, Token->Status will be set to EFI_ABORTED and then Token->Event will + be signaled. If the token is not in one of the queues, which usually means the + asynchronous operation has completed, this function will not signal the token + and EFI_NOT_FOUND is returned. + + @param This The pointer to the EFI_IP4_PROTOCOL instance. + @param Token The pointer to a token that has been issued by + EFI_IP4_PROTOCOL.Transmit() or + EFI_IP4_PROTOCOL.Receive(). If NULL, all pending + tokens are aborted. Type EFI_IP4_COMPLETION_TOKEN is + defined in EFI_IP4_PROTOCOL.Transmit(). + + @retval EFI_SUCCESS The asynchronous I/O request was aborted and + Token->Event was signaled. When Token is NULL, all + pending requests were aborted and their events were signaled. + @retval EFI_INVALID_PARAMETER This is NULL. + @retval EFI_NOT_STARTED This instance has not been started. + @retval EFI_NO_MAPPING When using the default address, configuration (DHCP, BOOTP, + RARP, etc.) is not finished yet. + @retval EFI_NOT_FOUND When Token is not NULL, the asynchronous I/O request was + not found in the transmit or receive queue. It has either completed + or was not issued by Transmit() and Receive(). + +**/ +typedef +EFI_STATUS +(EFIAPI *EFI_IP4_CANCEL)( + IN EFI_IP4_PROTOCOL *This, + IN EFI_IP4_COMPLETION_TOKEN *Token OPTIONAL + ); + +/** + Polls for incoming data packets and processes outgoing data packets. + + The Poll() function polls for incoming data packets and processes outgoing data + packets. Network drivers and applications can call the EFI_IP4_PROTOCOL.Poll() + function to increase the rate that data packets are moved between the communications + device and the transmit and receive queues. + + In some systems the periodic timer event may not poll the underlying communications + device fast enough to transmit and/or receive all data packets without missing + incoming packets or dropping outgoing packets. Drivers and applications that are + experiencing packet loss should try calling the EFI_IP4_PROTOCOL.Poll() function + more often. + + @param This The pointer to the EFI_IP4_PROTOCOL instance. + + @retval EFI_SUCCESS Incoming or outgoing data was processed. + @retval EFI_NOT_STARTED This EFI IPv4 Protocol instance has not been started. + @retval EFI_NO_MAPPING When using the default address, configuration (DHCP, BOOTP, + RARP, etc.) is not finished yet. + @retval EFI_INVALID_PARAMETER This is NULL. + @retval EFI_DEVICE_ERROR An unexpected system or network error occurred. + @retval EFI_NOT_READY No incoming or outgoing data is processed. + @retval EFI_TIMEOUT Data was dropped out of the transmit and/or receive queue. + Consider increasing the polling rate. + +**/ +typedef +EFI_STATUS +(EFIAPI *EFI_IP4_POLL)( + IN EFI_IP4_PROTOCOL *This + ); + +/// +/// The EFI IPv4 Protocol implements a simple packet-oriented interface that can be +/// used by drivers, daemons, and applications to transmit and receive network packets. +/// +struct _EFI_IP4_PROTOCOL { + EFI_IP4_GET_MODE_DATA GetModeData; + EFI_IP4_CONFIGURE Configure; + EFI_IP4_GROUPS Groups; + EFI_IP4_ROUTES Routes; + EFI_IP4_TRANSMIT Transmit; + EFI_IP4_RECEIVE Receive; + EFI_IP4_CANCEL Cancel; + EFI_IP4_POLL Poll; +}; + +extern EFI_GUID gEfiIp4ServiceBindingProtocolGuid; +extern EFI_GUID gEfiIp4ProtocolGuid; + +#endif diff --git a/src/include/ipxe/efi/Protocol/Ip4Config.h b/src/include/ipxe/efi/Protocol/Ip4Config.h new file mode 100644 index 000000000..227ae0399 --- /dev/null +++ b/src/include/ipxe/efi/Protocol/Ip4Config.h @@ -0,0 +1,184 @@ +/** @file + This file provides a definition of the EFI IPv4 Configuration + Protocol. + +Copyright (c) 2006 - 2014, Intel Corporation. All rights reserved.
+This program and the accompanying materials are licensed and made available under +the terms and conditions of the BSD License that accompanies this distribution. +The full text of the license may be found at +http://opensource.org/licenses/bsd-license.php. + +THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS, +WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED. + + @par Revision Reference: + This Protocol is introduced in UEFI Specification 2.0. + +**/ +#ifndef __EFI_IP4CONFIG_PROTOCOL_H__ +#define __EFI_IP4CONFIG_PROTOCOL_H__ + +FILE_LICENCE ( BSD3 ); + +#include + +#define EFI_IP4_CONFIG_PROTOCOL_GUID \ + { \ + 0x3b95aa31, 0x3793, 0x434b, {0x86, 0x67, 0xc8, 0x07, 0x08, 0x92, 0xe0, 0x5e } \ + } + +typedef struct _EFI_IP4_CONFIG_PROTOCOL EFI_IP4_CONFIG_PROTOCOL; + +#define IP4_CONFIG_VARIABLE_ATTRIBUTES \ + (EFI_VARIABLE_NON_VOLATILE | EFI_VARIABLE_BOOTSERVICE_ACCESS) + +/// +/// EFI_IP4_IPCONFIG_DATA contains the minimum IPv4 configuration data +/// that is needed to start basic network communication. The StationAddress +/// and SubnetMask must be a valid unicast IP address and subnet mask. +/// If RouteTableSize is not zero, then RouteTable contains a properly +/// formatted routing table for the StationAddress/SubnetMask, with the +/// last entry in the table being the default route. +/// +typedef struct { + /// + /// Default station IP address, stored in network byte order. + /// + EFI_IPv4_ADDRESS StationAddress; + /// + /// Default subnet mask, stored in network byte order. + /// + EFI_IPv4_ADDRESS SubnetMask; + /// + /// Number of entries in the following RouteTable. May be zero. + /// + UINT32 RouteTableSize; + /// + /// Default routing table data (stored in network byte order). + /// Ignored if RouteTableSize is zero. + /// + EFI_IP4_ROUTE_TABLE *RouteTable; +} EFI_IP4_IPCONFIG_DATA; + + +/** + Starts running the configuration policy for the EFI IPv4 Protocol driver. + + The Start() function is called to determine and to begin the platform + configuration policy by the EFI IPv4 Protocol driver. This determination may + be as simple as returning EFI_UNSUPPORTED if there is no EFI IPv4 Protocol + driver configuration policy. It may be as involved as loading some defaults + from nonvolatile storage, downloading dynamic data from a DHCP server, and + checking permissions with a site policy server. + Starting the configuration policy is just the beginning. It may finish almost + instantly or it may take several minutes before it fails to retrieve configuration + information from one or more servers. Once the policy is started, drivers + should use the DoneEvent parameter to determine when the configuration policy + has completed. EFI_IP4_CONFIG_PROTOCOL.GetData() must then be called to + determine if the configuration succeeded or failed. + Until the configuration completes successfully, EFI IPv4 Protocol driver instances + that are attempting to use default configurations must return EFI_NO_MAPPING. + Once the configuration is complete, the EFI IPv4 Configuration Protocol driver + signals DoneEvent. The configuration may need to be updated in the future. + Note that in this case the EFI IPv4 Configuration Protocol driver must signal + ReconfigEvent, and all EFI IPv4 Protocol driver instances that are using default + configurations must return EFI_NO_MAPPING until the configuration policy has + been rerun. + + @param This The pointer to the EFI_IP4_CONFIG_PROTOCOL instance. + @param DoneEvent Event that will be signaled when the EFI IPv4 + Protocol driver configuration policy completes + execution. This event must be of type EVT_NOTIFY_SIGNAL. + @param ReconfigEvent Event that will be signaled when the EFI IPv4 + Protocol driver configuration needs to be updated. + This event must be of type EVT_NOTIFY_SIGNAL. + + @retval EFI_SUCCESS The configuration policy for the EFI IPv4 Protocol + driver is now running. + @retval EFI_INVALID_PARAMETER One or more of the following parameters is NULL: + This + DoneEvent + ReconfigEvent + @retval EFI_OUT_OF_RESOURCES Required system resources could not be allocated. + @retval EFI_ALREADY_STARTED The configuration policy for the EFI IPv4 Protocol + driver was already started. + @retval EFI_DEVICE_ERROR An unexpected system error or network error occurred. + @retval EFI_UNSUPPORTED This interface does not support the EFI IPv4 Protocol + driver configuration. + +**/ +typedef +EFI_STATUS +(EFIAPI *EFI_IP4_CONFIG_START)( + IN EFI_IP4_CONFIG_PROTOCOL *This, + IN EFI_EVENT DoneEvent, + IN EFI_EVENT ReconfigEvent + ); + +/** + Stops running the configuration policy for the EFI IPv4 Protocol driver. + + The Stop() function stops the configuration policy for the EFI IPv4 Protocol driver. + All configuration data will be lost after calling Stop(). + + @param This The pointer to the EFI_IP4_CONFIG_PROTOCOL instance. + + @retval EFI_SUCCESS The configuration policy for the EFI IPv4 Protocol + driver has been stopped. + @retval EFI_INVALID_PARAMETER This is NULL. + @retval EFI_NOT_STARTED The configuration policy for the EFI IPv4 Protocol + driver was not started. + +**/ +typedef +EFI_STATUS +(EFIAPI *EFI_IP4_CONFIG_STOP)( + IN EFI_IP4_CONFIG_PROTOCOL *This + ); + +/** + Returns the default configuration data (if any) for the EFI IPv4 Protocol driver. + + The GetData() function returns the current configuration data for the EFI IPv4 + Protocol driver after the configuration policy has completed. + + @param This The pointer to the EFI_IP4_CONFIG_PROTOCOL instance. + @param IpConfigDataSize On input, the size of the IpConfigData buffer. + On output, the count of bytes that were written + into the IpConfigData buffer. + @param IpConfigData The pointer to the EFI IPv4 Configuration Protocol + driver configuration data structure. + Type EFI_IP4_IPCONFIG_DATA is defined in + "Related Definitions" below. + + @retval EFI_SUCCESS The EFI IPv4 Protocol driver configuration has been returned. + @retval EFI_INVALID_PARAMETER This is NULL. + @retval EFI_NOT_STARTED The configuration policy for the EFI IPv4 Protocol + driver is not running. + @retval EFI_NOT_READY EFI IPv4 Protocol driver configuration is still running. + @retval EFI_ABORTED EFI IPv4 Protocol driver configuration could not complete. + @retval EFI_BUFFER_TOO_SMALL *IpConfigDataSize is smaller than the configuration + data buffer or IpConfigData is NULL. + +**/ +typedef +EFI_STATUS +(EFIAPI *EFI_IP4_CONFIG_GET_DATA)( + IN EFI_IP4_CONFIG_PROTOCOL *This, + IN OUT UINTN *IpConfigDataSize, + OUT EFI_IP4_IPCONFIG_DATA *IpConfigData OPTIONAL + ); + +/// +/// The EFI_IP4_CONFIG_PROTOCOL driver performs platform-dependent and policy-dependent +/// configurations for the EFI IPv4 Protocol driver. +/// +struct _EFI_IP4_CONFIG_PROTOCOL { + EFI_IP4_CONFIG_START Start; + EFI_IP4_CONFIG_STOP Stop; + EFI_IP4_CONFIG_GET_DATA GetData; +}; + +extern EFI_GUID gEfiIp4ConfigProtocolGuid; + +#endif diff --git a/src/include/ipxe/efi/Protocol/ManagedNetwork.h b/src/include/ipxe/efi/Protocol/ManagedNetwork.h new file mode 100644 index 000000000..2bd092269 --- /dev/null +++ b/src/include/ipxe/efi/Protocol/ManagedNetwork.h @@ -0,0 +1,374 @@ +/** @file + EFI_MANAGED_NETWORK_SERVICE_BINDING_PROTOCOL as defined in UEFI 2.0. + EFI_MANAGED_NETWORK_PROTOCOL as defined in UEFI 2.0. + +Copyright (c) 2006 - 2010, Intel Corporation. All rights reserved.
+This program and the accompanying materials are licensed and made available under +the terms and conditions of the BSD License that accompanies this distribution. +The full text of the license may be found at +http://opensource.org/licenses/bsd-license.php. + +THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS, +WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED. + + @par Revision Reference: + This Protocol is introduced in UEFI Specification 2.0 + +**/ + +#ifndef __EFI_MANAGED_NETWORK_PROTOCOL_H__ +#define __EFI_MANAGED_NETWORK_PROTOCOL_H__ + +FILE_LICENCE ( BSD3 ); + +#include + +#define EFI_MANAGED_NETWORK_SERVICE_BINDING_PROTOCOL_GUID \ + { \ + 0xf36ff770, 0xa7e1, 0x42cf, {0x9e, 0xd2, 0x56, 0xf0, 0xf2, 0x71, 0xf4, 0x4c } \ + } + +#define EFI_MANAGED_NETWORK_PROTOCOL_GUID \ + { \ + 0x7ab33a91, 0xace5, 0x4326, { 0xb5, 0x72, 0xe7, 0xee, 0x33, 0xd3, 0x9f, 0x16 } \ + } + +typedef struct _EFI_MANAGED_NETWORK_PROTOCOL EFI_MANAGED_NETWORK_PROTOCOL; + +typedef struct { + /// + /// Timeout value for a UEFI one-shot timer event. A packet that has not been removed + /// from the MNP receive queue will be dropped if its receive timeout expires. + /// + UINT32 ReceivedQueueTimeoutValue; + /// + /// Timeout value for a UEFI one-shot timer event. A packet that has not been removed + /// from the MNP transmit queue will be dropped if its receive timeout expires. + /// + UINT32 TransmitQueueTimeoutValue; + /// + /// Ethernet type II 16-bit protocol type in host byte order. Valid + /// values are zero and 1,500 to 65,535. + /// + UINT16 ProtocolTypeFilter; + /// + /// Set to TRUE to receive packets that are sent to the network + /// device MAC address. The startup default value is FALSE. + /// + BOOLEAN EnableUnicastReceive; + /// + /// Set to TRUE to receive packets that are sent to any of the + /// active multicast groups. The startup default value is FALSE. + /// + BOOLEAN EnableMulticastReceive; + /// + /// Set to TRUE to receive packets that are sent to the network + /// device broadcast address. The startup default value is FALSE. + /// + BOOLEAN EnableBroadcastReceive; + /// + /// Set to TRUE to receive packets that are sent to any MAC address. + /// The startup default value is FALSE. + /// + BOOLEAN EnablePromiscuousReceive; + /// + /// Set to TRUE to drop queued packets when the configuration + /// is changed. The startup default value is FALSE. + /// + BOOLEAN FlushQueuesOnReset; + /// + /// Set to TRUE to timestamp all packets when they are received + /// by the MNP. Note that timestamps may be unsupported in some + /// MNP implementations. The startup default value is FALSE. + /// + BOOLEAN EnableReceiveTimestamps; + /// + /// Set to TRUE to disable background polling in this MNP + /// instance. Note that background polling may not be supported in + /// all MNP implementations. The startup default value is FALSE, + /// unless background polling is not supported. + /// + BOOLEAN DisableBackgroundPolling; +} EFI_MANAGED_NETWORK_CONFIG_DATA; + +typedef struct { + EFI_TIME Timestamp; + EFI_EVENT RecycleEvent; + UINT32 PacketLength; + UINT32 HeaderLength; + UINT32 AddressLength; + UINT32 DataLength; + BOOLEAN BroadcastFlag; + BOOLEAN MulticastFlag; + BOOLEAN PromiscuousFlag; + UINT16 ProtocolType; + VOID *DestinationAddress; + VOID *SourceAddress; + VOID *MediaHeader; + VOID *PacketData; +} EFI_MANAGED_NETWORK_RECEIVE_DATA; + +typedef struct { + UINT32 FragmentLength; + VOID *FragmentBuffer; +} EFI_MANAGED_NETWORK_FRAGMENT_DATA; + +typedef struct { + EFI_MAC_ADDRESS *DestinationAddress; //OPTIONAL + EFI_MAC_ADDRESS *SourceAddress; //OPTIONAL + UINT16 ProtocolType; //OPTIONAL + UINT32 DataLength; + UINT16 HeaderLength; //OPTIONAL + UINT16 FragmentCount; + EFI_MANAGED_NETWORK_FRAGMENT_DATA FragmentTable[1]; +} EFI_MANAGED_NETWORK_TRANSMIT_DATA; + + +typedef struct { + /// + /// This Event will be signaled after the Status field is updated + /// by the MNP. The type of Event must be + /// EFI_NOTIFY_SIGNAL. The Task Priority Level (TPL) of + /// Event must be lower than or equal to TPL_CALLBACK. + /// + EFI_EVENT Event; + /// + /// The status that is returned to the caller at the end of the operation + /// to indicate whether this operation completed successfully. + /// + EFI_STATUS Status; + union { + /// + /// When this token is used for receiving, RxData is a pointer to the EFI_MANAGED_NETWORK_RECEIVE_DATA. + /// + EFI_MANAGED_NETWORK_RECEIVE_DATA *RxData; + /// + /// When this token is used for transmitting, TxData is a pointer to the EFI_MANAGED_NETWORK_TRANSMIT_DATA. + /// + EFI_MANAGED_NETWORK_TRANSMIT_DATA *TxData; + } Packet; +} EFI_MANAGED_NETWORK_COMPLETION_TOKEN; + +/** + Returns the operational parameters for the current MNP child driver. + + @param This The pointer to the EFI_MANAGED_NETWORK_PROTOCOL instance. + @param MnpConfigData The pointer to storage for MNP operational parameters. + @param SnpModeData The pointer to storage for SNP operational parameters. + + @retval EFI_SUCCESS The operation completed successfully. + @retval EFI_INVALID_PARAMETER This is NULL. + @retval EFI_UNSUPPORTED The requested feature is unsupported in this MNP implementation. + @retval EFI_NOT_STARTED This MNP child driver instance has not been configured. The default + values are returned in MnpConfigData if it is not NULL. + @retval Other The mode data could not be read. + +**/ +typedef +EFI_STATUS +(EFIAPI *EFI_MANAGED_NETWORK_GET_MODE_DATA)( + IN EFI_MANAGED_NETWORK_PROTOCOL *This, + OUT EFI_MANAGED_NETWORK_CONFIG_DATA *MnpConfigData OPTIONAL, + OUT EFI_SIMPLE_NETWORK_MODE *SnpModeData OPTIONAL + ); + +/** + Sets or clears the operational parameters for the MNP child driver. + + @param This The pointer to the EFI_MANAGED_NETWORK_PROTOCOL instance. + @param MnpConfigData The pointer to configuration data that will be assigned to the MNP + child driver instance. If NULL, the MNP child driver instance is + reset to startup defaults and all pending transmit and receive + requests are flushed. + + @retval EFI_SUCCESS The operation completed successfully. + @retval EFI_INVALID_PARAMETER One or more parameters are invalid. + @retval EFI_OUT_OF_RESOURCES Required system resources (usually memory) could not be + allocated. + @retval EFI_UNSUPPORTED The requested feature is unsupported in this [MNP] + implementation. + @retval EFI_DEVICE_ERROR An unexpected network or system error occurred. + @retval Other The MNP child driver instance has been reset to startup defaults. + +**/ +typedef +EFI_STATUS +(EFIAPI *EFI_MANAGED_NETWORK_CONFIGURE)( + IN EFI_MANAGED_NETWORK_PROTOCOL *This, + IN EFI_MANAGED_NETWORK_CONFIG_DATA *MnpConfigData OPTIONAL + ); + +/** + Translates an IP multicast address to a hardware (MAC) multicast address. + + @param This The pointer to the EFI_MANAGED_NETWORK_PROTOCOL instance. + @param Ipv6Flag Set to TRUE to if IpAddress is an IPv6 multicast address. + Set to FALSE if IpAddress is an IPv4 multicast address. + @param IpAddress The pointer to the multicast IP address (in network byte order) to convert. + @param MacAddress The pointer to the resulting multicast MAC address. + + @retval EFI_SUCCESS The operation completed successfully. + @retval EFI_INVALID_PARAMETER One of the following conditions is TRUE: + - This is NULL. + - IpAddress is NULL. + - *IpAddress is not a valid multicast IP address. + - MacAddress is NULL. + @retval EFI_NOT_STARTED This MNP child driver instance has not been configured. + @retval EFI_UNSUPPORTED The requested feature is unsupported in this MNP implementation. + @retval EFI_DEVICE_ERROR An unexpected network or system error occurred. + @retval Other The address could not be converted. + +**/ +typedef +EFI_STATUS +(EFIAPI *EFI_MANAGED_NETWORK_MCAST_IP_TO_MAC)( + IN EFI_MANAGED_NETWORK_PROTOCOL *This, + IN BOOLEAN Ipv6Flag, + IN EFI_IP_ADDRESS *IpAddress, + OUT EFI_MAC_ADDRESS *MacAddress + ); + +/** + Enables and disables receive filters for multicast address. + + @param This The pointer to the EFI_MANAGED_NETWORK_PROTOCOL instance. + @param JoinFlag Set to TRUE to join this multicast group. + Set to FALSE to leave this multicast group. + @param MacAddress The pointer to the multicast MAC group (address) to join or leave. + + @retval EFI_SUCCESS The requested operation completed successfully. + @retval EFI_INVALID_PARAMETER One or more of the following conditions is TRUE: + - This is NULL. + - JoinFlag is TRUE and MacAddress is NULL. + - *MacAddress is not a valid multicast MAC address. + @retval EFI_NOT_STARTED This MNP child driver instance has not been configured. + @retval EFI_ALREADY_STARTED The supplied multicast group is already joined. + @retval EFI_NOT_FOUND The supplied multicast group is not joined. + @retval EFI_DEVICE_ERROR An unexpected network or system error occurred. + @retval EFI_UNSUPPORTED The requested feature is unsupported in this MNP implementation. + @retval Other The requested operation could not be completed. + +**/ +typedef +EFI_STATUS +(EFIAPI *EFI_MANAGED_NETWORK_GROUPS)( + IN EFI_MANAGED_NETWORK_PROTOCOL *This, + IN BOOLEAN JoinFlag, + IN EFI_MAC_ADDRESS *MacAddress OPTIONAL + ); + +/** + Places asynchronous outgoing data packets into the transmit queue. + + @param This The pointer to the EFI_MANAGED_NETWORK_PROTOCOL instance. + @param Token The pointer to a token associated with the transmit data descriptor. + + @retval EFI_SUCCESS The transmit completion token was cached. + @retval EFI_NOT_STARTED This MNP child driver instance has not been configured. + @retval EFI_INVALID_PARAMETER One or more parameters are invalid. + @retval EFI_ACCESS_DENIED The transmit completion token is already in the transmit queue. + @retval EFI_OUT_OF_RESOURCES The transmit data could not be queued due to a lack of system resources + (usually memory). + @retval EFI_DEVICE_ERROR An unexpected system or network error occurred. + @retval EFI_NOT_READY The transmit request could not be queued because the transmit queue is full. + +**/ +typedef +EFI_STATUS +(EFIAPI *EFI_MANAGED_NETWORK_TRANSMIT)( + IN EFI_MANAGED_NETWORK_PROTOCOL *This, + IN EFI_MANAGED_NETWORK_COMPLETION_TOKEN *Token + ); + +/** + Places an asynchronous receiving request into the receiving queue. + + @param This The pointer to the EFI_MANAGED_NETWORK_PROTOCOL instance. + @param Token The pointer to a token associated with the receive data descriptor. + + @retval EFI_SUCCESS The receive completion token was cached. + @retval EFI_NOT_STARTED This MNP child driver instance has not been configured. + @retval EFI_INVALID_PARAMETER One or more of the following conditions is TRUE: + - This is NULL. + - Token is NULL. + - Token.Event is NULL. + @retval EFI_OUT_OF_RESOURCES The transmit data could not be queued due to a lack of system resources + (usually memory). + @retval EFI_DEVICE_ERROR An unexpected system or network error occurred. + @retval EFI_ACCESS_DENIED The receive completion token was already in the receive queue. + @retval EFI_NOT_READY The receive request could not be queued because the receive queue is full. + +**/ +typedef +EFI_STATUS +(EFIAPI *EFI_MANAGED_NETWORK_RECEIVE)( + IN EFI_MANAGED_NETWORK_PROTOCOL *This, + IN EFI_MANAGED_NETWORK_COMPLETION_TOKEN *Token + ); + + +/** + Aborts an asynchronous transmit or receive request. + + @param This The pointer to the EFI_MANAGED_NETWORK_PROTOCOL instance. + @param Token The pointer to a token that has been issued by + EFI_MANAGED_NETWORK_PROTOCOL.Transmit() or + EFI_MANAGED_NETWORK_PROTOCOL.Receive(). If + NULL, all pending tokens are aborted. + + @retval EFI_SUCCESS The asynchronous I/O request was aborted and Token.Event + was signaled. When Token is NULL, all pending requests were + aborted and their events were signaled. + @retval EFI_NOT_STARTED This MNP child driver instance has not been configured. + @retval EFI_INVALID_PARAMETER This is NULL. + @retval EFI_NOT_FOUND When Token is not NULL, the asynchronous I/O request was + not found in the transmit or receive queue. It has either completed + or was not issued by Transmit() and Receive(). + +**/ +typedef +EFI_STATUS +(EFIAPI *EFI_MANAGED_NETWORK_CANCEL)( + IN EFI_MANAGED_NETWORK_PROTOCOL *This, + IN EFI_MANAGED_NETWORK_COMPLETION_TOKEN *Token OPTIONAL + ); + +/** + Polls for incoming data packets and processes outgoing data packets. + + @param This The pointer to the EFI_MANAGED_NETWORK_PROTOCOL instance. + + @retval EFI_SUCCESS Incoming or outgoing data was processed. + @retval EFI_NOT_STARTED This MNP child driver instance has not been configured. + @retval EFI_DEVICE_ERROR An unexpected system or network error occurred. + @retval EFI_NOT_READY No incoming or outgoing data was processed. Consider increasing + the polling rate. + @retval EFI_TIMEOUT Data was dropped out of the transmit and/or receive queue. + Consider increasing the polling rate. + +**/ +typedef +EFI_STATUS +(EFIAPI *EFI_MANAGED_NETWORK_POLL)( + IN EFI_MANAGED_NETWORK_PROTOCOL *This + ); + +/// +/// The MNP is used by network applications (and drivers) to +/// perform raw (unformatted) asynchronous network packet I/O. +/// +struct _EFI_MANAGED_NETWORK_PROTOCOL { + EFI_MANAGED_NETWORK_GET_MODE_DATA GetModeData; + EFI_MANAGED_NETWORK_CONFIGURE Configure; + EFI_MANAGED_NETWORK_MCAST_IP_TO_MAC McastIpToMac; + EFI_MANAGED_NETWORK_GROUPS Groups; + EFI_MANAGED_NETWORK_TRANSMIT Transmit; + EFI_MANAGED_NETWORK_RECEIVE Receive; + EFI_MANAGED_NETWORK_CANCEL Cancel; + EFI_MANAGED_NETWORK_POLL Poll; +}; + +extern EFI_GUID gEfiManagedNetworkServiceBindingProtocolGuid; +extern EFI_GUID gEfiManagedNetworkProtocolGuid; + +#endif diff --git a/src/include/ipxe/efi/Protocol/Mtftp4.h b/src/include/ipxe/efi/Protocol/Mtftp4.h new file mode 100644 index 000000000..0e961cfd4 --- /dev/null +++ b/src/include/ipxe/efi/Protocol/Mtftp4.h @@ -0,0 +1,595 @@ +/** @file + EFI Multicast Trivial File Tranfer Protocol Definition + +Copyright (c) 2006 - 2011, Intel Corporation. All rights reserved.
+This program and the accompanying materials are licensed and made available under +the terms and conditions of the BSD License that accompanies this distribution. +The full text of the license may be found at +http://opensource.org/licenses/bsd-license.php. + +THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS, +WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED. + + @par Revision Reference: + This Protocol is introduced in UEFI Specification 2.0 + +**/ + +#ifndef __EFI_MTFTP4_PROTOCOL_H__ +#define __EFI_MTFTP4_PROTOCOL_H__ + +FILE_LICENCE ( BSD3 ); + +#define EFI_MTFTP4_SERVICE_BINDING_PROTOCOL_GUID \ + { \ + 0x2FE800BE, 0x8F01, 0x4aa6, {0x94, 0x6B, 0xD7, 0x13, 0x88, 0xE1, 0x83, 0x3F } \ + } + +#define EFI_MTFTP4_PROTOCOL_GUID \ + { \ + 0x78247c57, 0x63db, 0x4708, {0x99, 0xc2, 0xa8, 0xb4, 0xa9, 0xa6, 0x1f, 0x6b } \ + } + +typedef struct _EFI_MTFTP4_PROTOCOL EFI_MTFTP4_PROTOCOL; +typedef struct _EFI_MTFTP4_TOKEN EFI_MTFTP4_TOKEN; + +// +//MTFTP4 packet opcode definition +// +#define EFI_MTFTP4_OPCODE_RRQ 1 +#define EFI_MTFTP4_OPCODE_WRQ 2 +#define EFI_MTFTP4_OPCODE_DATA 3 +#define EFI_MTFTP4_OPCODE_ACK 4 +#define EFI_MTFTP4_OPCODE_ERROR 5 +#define EFI_MTFTP4_OPCODE_OACK 6 +#define EFI_MTFTP4_OPCODE_DIR 7 +#define EFI_MTFTP4_OPCODE_DATA8 8 +#define EFI_MTFTP4_OPCODE_ACK8 9 + +// +// MTFTP4 error code definition +// +#define EFI_MTFTP4_ERRORCODE_NOT_DEFINED 0 +#define EFI_MTFTP4_ERRORCODE_FILE_NOT_FOUND 1 +#define EFI_MTFTP4_ERRORCODE_ACCESS_VIOLATION 2 +#define EFI_MTFTP4_ERRORCODE_DISK_FULL 3 +#define EFI_MTFTP4_ERRORCODE_ILLEGAL_OPERATION 4 +#define EFI_MTFTP4_ERRORCODE_UNKNOWN_TRANSFER_ID 5 +#define EFI_MTFTP4_ERRORCODE_FILE_ALREADY_EXISTS 6 +#define EFI_MTFTP4_ERRORCODE_NO_SUCH_USER 7 +#define EFI_MTFTP4_ERRORCODE_REQUEST_DENIED 8 + +// +// MTFTP4 pacekt definitions +// +#pragma pack(1) + +typedef struct { + UINT16 OpCode; + UINT8 Filename[1]; +} EFI_MTFTP4_REQ_HEADER; + +typedef struct { + UINT16 OpCode; + UINT8 Data[1]; +} EFI_MTFTP4_OACK_HEADER; + +typedef struct { + UINT16 OpCode; + UINT16 Block; + UINT8 Data[1]; +} EFI_MTFTP4_DATA_HEADER; + +typedef struct { + UINT16 OpCode; + UINT16 Block[1]; +} EFI_MTFTP4_ACK_HEADER; + +typedef struct { + UINT16 OpCode; + UINT64 Block; + UINT8 Data[1]; +} EFI_MTFTP4_DATA8_HEADER; + +typedef struct { + UINT16 OpCode; + UINT64 Block[1]; +} EFI_MTFTP4_ACK8_HEADER; + +typedef struct { + UINT16 OpCode; + UINT16 ErrorCode; + UINT8 ErrorMessage[1]; +} EFI_MTFTP4_ERROR_HEADER; + +typedef union { + /// + /// Type of packets as defined by the MTFTPv4 packet opcodes. + /// + UINT16 OpCode; + /// + /// Read request packet header. + /// + EFI_MTFTP4_REQ_HEADER Rrq; + /// + /// Write request packet header. + /// + EFI_MTFTP4_REQ_HEADER Wrq; + /// + /// Option acknowledge packet header. + /// + EFI_MTFTP4_OACK_HEADER Oack; + /// + /// Data packet header. + /// + EFI_MTFTP4_DATA_HEADER Data; + /// + /// Acknowledgement packet header. + /// + EFI_MTFTP4_ACK_HEADER Ack; + /// + /// Data packet header with big block number. + /// + EFI_MTFTP4_DATA8_HEADER Data8; + /// + /// Acknowledgement header with big block num. + /// + EFI_MTFTP4_ACK8_HEADER Ack8; + /// + /// Error packet header. + /// + EFI_MTFTP4_ERROR_HEADER Error; +} EFI_MTFTP4_PACKET; + +#pragma pack() + +/// +/// MTFTP4 option definition. +/// +typedef struct { + UINT8 *OptionStr; + UINT8 *ValueStr; +} EFI_MTFTP4_OPTION; + + +typedef struct { + BOOLEAN UseDefaultSetting; + EFI_IPv4_ADDRESS StationIp; + EFI_IPv4_ADDRESS SubnetMask; + UINT16 LocalPort; + EFI_IPv4_ADDRESS GatewayIp; + EFI_IPv4_ADDRESS ServerIp; + UINT16 InitialServerPort; + UINT16 TryCount; + UINT16 TimeoutValue; +} EFI_MTFTP4_CONFIG_DATA; + + +typedef struct { + EFI_MTFTP4_CONFIG_DATA ConfigData; + UINT8 SupportedOptionCount; + UINT8 **SupportedOptoins; + UINT8 UnsupportedOptionCount; + UINT8 **UnsupportedOptoins; +} EFI_MTFTP4_MODE_DATA; + + +typedef struct { + EFI_IPv4_ADDRESS GatewayIp; + EFI_IPv4_ADDRESS ServerIp; + UINT16 ServerPort; + UINT16 TryCount; + UINT16 TimeoutValue; +} EFI_MTFTP4_OVERRIDE_DATA; + +// +// Protocol interfaces definition +// + +/** + A callback function that is provided by the caller to intercept + the EFI_MTFTP4_OPCODE_DATA or EFI_MTFTP4_OPCODE_DATA8 packets processed in the + EFI_MTFTP4_PROTOCOL.ReadFile() function, and alternatively to intercept + EFI_MTFTP4_OPCODE_OACK or EFI_MTFTP4_OPCODE_ERROR packets during a call to + EFI_MTFTP4_PROTOCOL.ReadFile(), WriteFile() or ReadDirectory(). + + @param This The pointer to the EFI_MTFTP4_PROTOCOL instance. + @param Token The token that the caller provided in the + EFI_MTFTP4_PROTOCOL.ReadFile(), WriteFile() + or ReadDirectory() function. + @param PacketLen Indicates the length of the packet. + @param Packet The pointer to an MTFTPv4 packet. + + @retval EFI_SUCCESS The operation was successful. + @retval Others Aborts the transfer process. + +**/ +typedef +EFI_STATUS +(EFIAPI *EFI_MTFTP4_CHECK_PACKET)( + IN EFI_MTFTP4_PROTOCOL *This, + IN EFI_MTFTP4_TOKEN *Token, + IN UINT16 PacketLen, + IN EFI_MTFTP4_PACKET *Paket + ); + +/** + Timeout callback funtion. + + @param This The pointer to the EFI_MTFTP4_PROTOCOL instance. + @param Token The token that is provided in the + EFI_MTFTP4_PROTOCOL.ReadFile() or + EFI_MTFTP4_PROTOCOL.WriteFile() or + EFI_MTFTP4_PROTOCOL.ReadDirectory() functions + by the caller. + + @retval EFI_SUCCESS The operation was successful. + @retval Others Aborts download process. + +**/ +typedef +EFI_STATUS +(EFIAPI *EFI_MTFTP4_TIMEOUT_CALLBACK)( + IN EFI_MTFTP4_PROTOCOL *This, + IN EFI_MTFTP4_TOKEN *Token + ); + +/** + A callback function that the caller provides to feed data to the + EFI_MTFTP4_PROTOCOL.WriteFile() function. + + @param This The pointer to the EFI_MTFTP4_PROTOCOL instance. + @param Token The token provided in the + EFI_MTFTP4_PROTOCOL.WriteFile() by the caller. + @param Length Indicates the length of the raw data wanted on input, and the + length the data available on output. + @param Buffer The pointer to the buffer where the data is stored. + + @retval EFI_SUCCESS The operation was successful. + @retval Others Aborts session. + +**/ +typedef +EFI_STATUS +(EFIAPI *EFI_MTFTP4_PACKET_NEEDED)( + IN EFI_MTFTP4_PROTOCOL *This, + IN EFI_MTFTP4_TOKEN *Token, + IN OUT UINT16 *Length, + OUT VOID **Buffer + ); + + +/** + Submits an asynchronous interrupt transfer to an interrupt endpoint of a USB device. + + @param This The pointer to the EFI_MTFTP4_PROTOCOL instance. + @param ModeData The pointer to storage for the EFI MTFTPv4 Protocol driver mode data. + + @retval EFI_SUCCESS The configuration data was successfully returned. + @retval EFI_OUT_OF_RESOURCES The required mode data could not be allocated. + @retval EFI_INVALID_PARAMETER This is NULL or ModeData is NULL. + +**/ +typedef +EFI_STATUS +(EFIAPI *EFI_MTFTP4_GET_MODE_DATA)( + IN EFI_MTFTP4_PROTOCOL *This, + OUT EFI_MTFTP4_MODE_DATA *ModeData + ); + + +/** + Initializes, changes, or resets the default operational setting for this + EFI MTFTPv4 Protocol driver instance. + + @param This The pointer to the EFI_MTFTP4_PROTOCOL instance. + @param MtftpConfigData The pointer to the configuration data structure. + + @retval EFI_SUCCESS The EFI MTFTPv4 Protocol driver was configured successfully. + @retval EFI_INVALID_PARAMETER One or more parameters are invalid. + @retval EFI_ACCESS_DENIED The EFI configuration could not be changed at this time because + there is one MTFTP background operation in progress. + @retval EFI_NO_MAPPING When using a default address, configuration (DHCP, BOOTP, + RARP, etc.) has not finished yet. + @retval EFI_UNSUPPORTED A configuration protocol (DHCP, BOOTP, RARP, etc.) could not + be located when clients choose to use the default address + settings. + @retval EFI_OUT_OF_RESOURCES The EFI MTFTPv4 Protocol driver instance data could not be + allocated. + @retval EFI_DEVICE_ERROR An unexpected system or network error occurred. The EFI + MTFTPv4 Protocol driver instance is not configured. + +**/ +typedef +EFI_STATUS +(EFIAPI *EFI_MTFTP4_CONFIGURE)( + IN EFI_MTFTP4_PROTOCOL *This, + IN EFI_MTFTP4_CONFIG_DATA *MtftpConfigData OPTIONAL + ); + + +/** + Gets information about a file from an MTFTPv4 server. + + @param This The pointer to the EFI_MTFTP4_PROTOCOL instance. + @param OverrideData Data that is used to override the existing parameters. If NULL, + the default parameters that were set in the + EFI_MTFTP4_PROTOCOL.Configure() function are used. + @param Filename The pointer to null-terminated ASCII file name string. + @param ModeStr The pointer to null-terminated ASCII mode string. If NULL, "octet" will be used. + @param OptionCount Number of option/value string pairs in OptionList. + @param OptionList The pointer to array of option/value string pairs. Ignored if + OptionCount is zero. + @param PacketLength The number of bytes in the returned packet. + @param Packet The pointer to the received packet. This buffer must be freed by + the caller. + + @retval EFI_SUCCESS An MTFTPv4 OACK packet was received and is in the Packet. + @retval EFI_INVALID_PARAMETER One or more of the following conditions is TRUE: + - This is NULL. + - Filename is NULL. + - OptionCount is not zero and OptionList is NULL. + - One or more options in OptionList have wrong format. + - PacketLength is NULL. + - One or more IPv4 addresses in OverrideData are not valid + unicast IPv4 addresses if OverrideData is not NULL. + @retval EFI_UNSUPPORTED One or more options in the OptionList are in the + unsupported list of structure EFI_MTFTP4_MODE_DATA. + @retval EFI_NOT_STARTED The EFI MTFTPv4 Protocol driver has not been started. + @retval EFI_NO_MAPPING When using a default address, configuration (DHCP, BOOTP, + RARP, etc.) has not finished yet. + @retval EFI_ACCESS_DENIED The previous operation has not completed yet. + @retval EFI_OUT_OF_RESOURCES Required system resources could not be allocated. + @retval EFI_TFTP_ERROR An MTFTPv4 ERROR packet was received and is in the Packet. + @retval EFI_NETWORK_UNREACHABLE An ICMP network unreachable error packet was received and the Packet is set to NULL. + @retval EFI_HOST_UNREACHABLE An ICMP host unreachable error packet was received and the Packet is set to NULL. + @retval EFI_PROTOCOL_UNREACHABLE An ICMP protocol unreachable error packet was received and the Packet is set to NULL. + @retval EFI_PORT_UNREACHABLE An ICMP port unreachable error packet was received and the Packet is set to NULL. + @retval EFI_ICMP_ERROR Some other ICMP ERROR packet was received and is in the Buffer. + @retval EFI_PROTOCOL_ERROR An unexpected MTFTPv4 packet was received and is in the Packet. + @retval EFI_TIMEOUT No responses were received from the MTFTPv4 server. + @retval EFI_DEVICE_ERROR An unexpected network error or system error occurred. + @retval EFI_NO_MEDIA There was a media error. + +**/ +typedef +EFI_STATUS +(EFIAPI *EFI_MTFTP4_GET_INFO)( + IN EFI_MTFTP4_PROTOCOL *This, + IN EFI_MTFTP4_OVERRIDE_DATA *OverrideData OPTIONAL, + IN UINT8 *Filename, + IN UINT8 *ModeStr OPTIONAL, + IN UINT8 OptionCount, + IN EFI_MTFTP4_OPTION *OptionList, + OUT UINT32 *PacketLength, + OUT EFI_MTFTP4_PACKET **Packet OPTIONAL + ); + +/** + Parses the options in an MTFTPv4 OACK packet. + + @param This The pointer to the EFI_MTFTP4_PROTOCOL instance. + @param PacketLen Length of the OACK packet to be parsed. + @param Packet The pointer to the OACK packet to be parsed. + @param OptionCount The pointer to the number of options in following OptionList. + @param OptionList The pointer to EFI_MTFTP4_OPTION storage. Call the EFI Boot + Service FreePool() to release the OptionList if the options + in this OptionList are not needed any more. + + @retval EFI_SUCCESS The OACK packet was valid and the OptionCount and + OptionList parameters have been updated. + @retval EFI_INVALID_PARAMETER One or more of the following conditions is TRUE: + - PacketLen is 0. + - Packet is NULL or Packet is not a valid MTFTPv4 packet. + - OptionCount is NULL. + @retval EFI_NOT_FOUND No options were found in the OACK packet. + @retval EFI_OUT_OF_RESOURCES Storage for the OptionList array cannot be allocated. + @retval EFI_PROTOCOL_ERROR One or more of the option fields is invalid. + +**/ +typedef +EFI_STATUS +(EFIAPI *EFI_MTFTP4_PARSE_OPTIONS)( + IN EFI_MTFTP4_PROTOCOL *This, + IN UINT32 PacketLen, + IN EFI_MTFTP4_PACKET *Packet, + OUT UINT32 *OptionCount, + OUT EFI_MTFTP4_OPTION **OptionList OPTIONAL + ); + + +/** + Downloads a file from an MTFTPv4 server. + + @param This The pointer to the EFI_MTFTP4_PROTOCOL instance. + @param Token The pointer to the token structure to provide the parameters that are + used in this operation. + + @retval EFI_SUCCESS The data file has been transferred successfully. + @retval EFI_OUT_OF_RESOURCES Required system resources could not be allocated. + @retval EFI_BUFFER_TOO_SMALL BufferSize is not zero but not large enough to hold the + downloaded data in downloading process. + @retval EFI_ABORTED Current operation is aborted by user. + @retval EFI_NETWORK_UNREACHABLE An ICMP network unreachable error packet was received. + @retval EFI_HOST_UNREACHABLE An ICMP host unreachable error packet was received. + @retval EFI_PROTOCOL_UNREACHABLE An ICMP protocol unreachable error packet was received. + @retval EFI_PORT_UNREACHABLE An ICMP port unreachable error packet was received. + @retval EFI_ICMP_ERROR Some other ICMP ERROR packet was received. + @retval EFI_TIMEOUT No responses were received from the MTFTPv4 server. + @retval EFI_TFTP_ERROR An MTFTPv4 ERROR packet was received. + @retval EFI_DEVICE_ERROR An unexpected network error or system error occurred. + @retval EFI_NO_MEDIA There was a media error. + +**/ +typedef +EFI_STATUS +(EFIAPI *EFI_MTFTP4_READ_FILE)( + IN EFI_MTFTP4_PROTOCOL *This, + IN EFI_MTFTP4_TOKEN *Token + ); + + + +/** + Sends a file to an MTFTPv4 server. + + @param This The pointer to the EFI_MTFTP4_PROTOCOL instance. + @param Token The pointer to the token structure to provide the parameters that are + used in this operation. + + @retval EFI_SUCCESS The upload session has started. + @retval EFI_UNSUPPORTED The operation is not supported by this implementation. + @retval EFI_INVALID_PARAMETER One or more parameters are invalid. + @retval EFI_UNSUPPORTED One or more options in the Token.OptionList are in + the unsupported list of structure EFI_MTFTP4_MODE_DATA. + @retval EFI_NOT_STARTED The EFI MTFTPv4 Protocol driver has not been started. + @retval EFI_NO_MAPPING When using a default address, configuration (DHCP, BOOTP, + RARP, etc.) is not finished yet. + @retval EFI_ALREADY_STARTED This Token is already being used in another MTFTPv4 session. + @retval EFI_OUT_OF_RESOURCES Required system resources could not be allocated. + @retval EFI_ACCESS_DENIED The previous operation has not completed yet. + @retval EFI_DEVICE_ERROR An unexpected network error or system error occurred. + +**/ +typedef +EFI_STATUS +(EFIAPI *EFI_MTFTP4_WRITE_FILE)( + IN EFI_MTFTP4_PROTOCOL *This, + IN EFI_MTFTP4_TOKEN *Token + ); + + +/** + Downloads a data file "directory" from an MTFTPv4 server. May be unsupported in some EFI + implementations. + + @param This The pointer to the EFI_MTFTP4_PROTOCOL instance. + @param Token The pointer to the token structure to provide the parameters that are + used in this operation. + + @retval EFI_SUCCESS The MTFTPv4 related file "directory" has been downloaded. + @retval EFI_UNSUPPORTED The operation is not supported by this implementation. + @retval EFI_INVALID_PARAMETER One or more parameters are invalid. + @retval EFI_UNSUPPORTED One or more options in the Token.OptionList are in + the unsupported list of structure EFI_MTFTP4_MODE_DATA. + @retval EFI_NOT_STARTED The EFI MTFTPv4 Protocol driver has not been started. + @retval EFI_NO_MAPPING When using a default address, configuration (DHCP, BOOTP, + RARP, etc.) is not finished yet. + @retval EFI_ALREADY_STARTED This Token is already being used in another MTFTPv4 session. + @retval EFI_OUT_OF_RESOURCES Required system resources could not be allocated. + @retval EFI_ACCESS_DENIED The previous operation has not completed yet. + @retval EFI_DEVICE_ERROR An unexpected network error or system error occurred. + +**/ +typedef +EFI_STATUS +(EFIAPI *EFI_MTFTP4_READ_DIRECTORY)( + IN EFI_MTFTP4_PROTOCOL *This, + IN EFI_MTFTP4_TOKEN *Token + ); + +/** + Polls for incoming data packets and processes outgoing data packets. + + @param This The pointer to the EFI_MTFTP4_PROTOCOL instance. + + @retval EFI_SUCCESS Incoming or outgoing data was processed. + @retval EFI_NOT_STARTED This EFI MTFTPv4 Protocol instance has not been started. + @retval EFI_NO_MAPPING When using a default address, configuration (DHCP, BOOTP, + RARP, etc.) is not finished yet. + @retval EFI_INVALID_PARAMETER This is NULL. + @retval EFI_DEVICE_ERROR An unexpected system or network error occurred. + @retval EFI_TIMEOUT Data was dropped out of the transmit and/or receive queue. + Consider increasing the polling rate. + +**/ +typedef +EFI_STATUS +(EFIAPI *EFI_MTFTP4_POLL)( + IN EFI_MTFTP4_PROTOCOL *This + ); + +/// +/// The EFI_MTFTP4_PROTOCOL is designed to be used by UEFI drivers and applications +/// to transmit and receive data files. The EFI MTFTPv4 Protocol driver uses +/// the underlying EFI UDPv4 Protocol driver and EFI IPv4 Protocol driver. +/// +struct _EFI_MTFTP4_PROTOCOL { + EFI_MTFTP4_GET_MODE_DATA GetModeData; + EFI_MTFTP4_CONFIGURE Configure; + EFI_MTFTP4_GET_INFO GetInfo; + EFI_MTFTP4_PARSE_OPTIONS ParseOptions; + EFI_MTFTP4_READ_FILE ReadFile; + EFI_MTFTP4_WRITE_FILE WriteFile; + EFI_MTFTP4_READ_DIRECTORY ReadDirectory; + EFI_MTFTP4_POLL Poll; +}; + +struct _EFI_MTFTP4_TOKEN { + /// + /// The status that is returned to the caller at the end of the operation + /// to indicate whether this operation completed successfully. + /// + EFI_STATUS Status; + /// + /// The event that will be signaled when the operation completes. If + /// set to NULL, the corresponding function will wait until the read or + /// write operation finishes. The type of Event must be + /// EVT_NOTIFY_SIGNAL. The Task Priority Level (TPL) of + /// Event must be lower than or equal to TPL_CALLBACK. + /// + EFI_EVENT Event; + /// + /// If not NULL, the data that will be used to override the existing configure data. + /// + EFI_MTFTP4_OVERRIDE_DATA *OverrideData; + /// + /// The pointer to the null-terminated ASCII file name string. + /// + UINT8 *Filename; + /// + /// The pointer to the null-terminated ASCII mode string. If NULL, "octet" is used. + /// + UINT8 *ModeStr; + /// + /// Number of option/value string pairs. + /// + UINT32 OptionCount; + /// + /// The pointer to an array of option/value string pairs. Ignored if OptionCount is zero. + /// + EFI_MTFTP4_OPTION *OptionList; + /// + /// The size of the data buffer. + /// + UINT64 BufferSize; + /// + /// The pointer to the data buffer. Data that is downloaded from the + /// MTFTPv4 server is stored here. Data that is uploaded to the + /// MTFTPv4 server is read from here. Ignored if BufferSize is zero. + /// + VOID *Buffer; + /// + /// The pointer to the context that will be used by CheckPacket, + /// TimeoutCallback and PacketNeeded. + /// + VOID *Context; + /// + /// The pointer to the callback function to check the contents of the received packet. + /// + EFI_MTFTP4_CHECK_PACKET CheckPacket; + /// + /// The pointer to the function to be called when a timeout occurs. + /// + EFI_MTFTP4_TIMEOUT_CALLBACK TimeoutCallback; + /// + /// The pointer to the function to provide the needed packet contents. + /// + EFI_MTFTP4_PACKET_NEEDED PacketNeeded; +}; + +extern EFI_GUID gEfiMtftp4ServiceBindingProtocolGuid; +extern EFI_GUID gEfiMtftp4ProtocolGuid; + +#endif + diff --git a/src/include/ipxe/efi/Protocol/Tcp4.h b/src/include/ipxe/efi/Protocol/Tcp4.h new file mode 100644 index 000000000..1771bc55f --- /dev/null +++ b/src/include/ipxe/efi/Protocol/Tcp4.h @@ -0,0 +1,579 @@ +/** @file + EFI TCPv4(Transmission Control Protocol version 4) Protocol Definition + The EFI TCPv4 Service Binding Protocol is used to locate EFI TCPv4 Protocol drivers to create + and destroy child of the driver to communicate with other host using TCP protocol. + The EFI TCPv4 Protocol provides services to send and receive data stream. + +Copyright (c) 2006 - 2014, Intel Corporation. All rights reserved.
+This program and the accompanying materials are licensed and made available under +the terms and conditions of the BSD License that accompanies this distribution. +The full text of the license may be found at +http://opensource.org/licenses/bsd-license.php. + +THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS, +WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED. + + @par Revision Reference: + This Protocol is introduced in UEFI Specification 2.0. + +**/ + +#ifndef __EFI_TCP4_PROTOCOL_H__ +#define __EFI_TCP4_PROTOCOL_H__ + +FILE_LICENCE ( BSD3 ); + +#include + +#define EFI_TCP4_SERVICE_BINDING_PROTOCOL_GUID \ + { \ + 0x00720665, 0x67EB, 0x4a99, {0xBA, 0xF7, 0xD3, 0xC3, 0x3A, 0x1C, 0x7C, 0xC9 } \ + } + +#define EFI_TCP4_PROTOCOL_GUID \ + { \ + 0x65530BC7, 0xA359, 0x410f, {0xB0, 0x10, 0x5A, 0xAD, 0xC7, 0xEC, 0x2B, 0x62 } \ + } + +typedef struct _EFI_TCP4_PROTOCOL EFI_TCP4_PROTOCOL; + +/// +/// EFI_TCP4_SERVICE_POINT is deprecated in the UEFI 2.4B and should not be used any more. +/// The definition in here is only present to provide backwards compatability. +/// +typedef struct { + EFI_HANDLE InstanceHandle; + EFI_IPv4_ADDRESS LocalAddress; + UINT16 LocalPort; + EFI_IPv4_ADDRESS RemoteAddress; + UINT16 RemotePort; +} EFI_TCP4_SERVICE_POINT; + +/// +/// EFI_TCP4_VARIABLE_DATA is deprecated in the UEFI 2.4B and should not be used any more. +/// The definition in here is only present to provide backwards compatability. +/// +typedef struct { + EFI_HANDLE DriverHandle; + UINT32 ServiceCount; + EFI_TCP4_SERVICE_POINT Services[1]; +} EFI_TCP4_VARIABLE_DATA; + +typedef struct { + BOOLEAN UseDefaultAddress; + EFI_IPv4_ADDRESS StationAddress; + EFI_IPv4_ADDRESS SubnetMask; + UINT16 StationPort; + EFI_IPv4_ADDRESS RemoteAddress; + UINT16 RemotePort; + BOOLEAN ActiveFlag; +} EFI_TCP4_ACCESS_POINT; + +typedef struct { + UINT32 ReceiveBufferSize; + UINT32 SendBufferSize; + UINT32 MaxSynBackLog; + UINT32 ConnectionTimeout; + UINT32 DataRetries; + UINT32 FinTimeout; + UINT32 TimeWaitTimeout; + UINT32 KeepAliveProbes; + UINT32 KeepAliveTime; + UINT32 KeepAliveInterval; + BOOLEAN EnableNagle; + BOOLEAN EnableTimeStamp; + BOOLEAN EnableWindowScaling; + BOOLEAN EnableSelectiveAck; + BOOLEAN EnablePathMtuDiscovery; +} EFI_TCP4_OPTION; + +typedef struct { + // + // I/O parameters + // + UINT8 TypeOfService; + UINT8 TimeToLive; + + // + // Access Point + // + EFI_TCP4_ACCESS_POINT AccessPoint; + + // + // TCP Control Options + // + EFI_TCP4_OPTION *ControlOption; +} EFI_TCP4_CONFIG_DATA; + +/// +/// TCP4 connnection state +/// +typedef enum { + Tcp4StateClosed = 0, + Tcp4StateListen = 1, + Tcp4StateSynSent = 2, + Tcp4StateSynReceived = 3, + Tcp4StateEstablished = 4, + Tcp4StateFinWait1 = 5, + Tcp4StateFinWait2 = 6, + Tcp4StateClosing = 7, + Tcp4StateTimeWait = 8, + Tcp4StateCloseWait = 9, + Tcp4StateLastAck = 10 +} EFI_TCP4_CONNECTION_STATE; + +typedef struct { + EFI_EVENT Event; + EFI_STATUS Status; +} EFI_TCP4_COMPLETION_TOKEN; + +typedef struct { + /// + /// The Status in the CompletionToken will be set to one of + /// the following values if the active open succeeds or an unexpected + /// error happens: + /// EFI_SUCCESS: The active open succeeds and the instance's + /// state is Tcp4StateEstablished. + /// EFI_CONNECTION_RESET: The connect fails because the connection is reset + /// either by instance itself or the communication peer. + /// EFI_CONNECTION_REFUSED: The connect fails because this connection is initiated with + /// an active open and the connection is refused. + /// EFI_ABORTED: The active open is aborted. + /// EFI_TIMEOUT: The connection establishment timer expires and + /// no more specific information is available. + /// EFI_NETWORK_UNREACHABLE: The active open fails because + /// an ICMP network unreachable error is received. + /// EFI_HOST_UNREACHABLE: The active open fails because an + /// ICMP host unreachable error is received. + /// EFI_PROTOCOL_UNREACHABLE: The active open fails + /// because an ICMP protocol unreachable error is received. + /// EFI_PORT_UNREACHABLE: The connection establishment + /// timer times out and an ICMP port unreachable error is received. + /// EFI_ICMP_ERROR: The connection establishment timer timeout and some other ICMP + /// error is received. + /// EFI_DEVICE_ERROR: An unexpected system or network error occurred. + /// EFI_NO_MEDIA: There was a media error. + /// + EFI_TCP4_COMPLETION_TOKEN CompletionToken; +} EFI_TCP4_CONNECTION_TOKEN; + +typedef struct { + EFI_TCP4_COMPLETION_TOKEN CompletionToken; + EFI_HANDLE NewChildHandle; +} EFI_TCP4_LISTEN_TOKEN; + +typedef struct { + UINT32 FragmentLength; + VOID *FragmentBuffer; +} EFI_TCP4_FRAGMENT_DATA; + +typedef struct { + BOOLEAN UrgentFlag; + UINT32 DataLength; + UINT32 FragmentCount; + EFI_TCP4_FRAGMENT_DATA FragmentTable[1]; +} EFI_TCP4_RECEIVE_DATA; + +typedef struct { + BOOLEAN Push; + BOOLEAN Urgent; + UINT32 DataLength; + UINT32 FragmentCount; + EFI_TCP4_FRAGMENT_DATA FragmentTable[1]; +} EFI_TCP4_TRANSMIT_DATA; + +typedef struct { + /// + /// When transmission finishes or meets any unexpected error it will + /// be set to one of the following values: + /// EFI_SUCCESS: The receiving or transmission operation + /// completes successfully. + /// EFI_CONNECTION_FIN: The receiving operation fails because the communication peer + /// has closed the connection and there is no more data in the + /// receive buffer of the instance. + /// EFI_CONNECTION_RESET: The receiving or transmission operation fails + /// because this connection is reset either by instance + /// itself or the communication peer. + /// EFI_ABORTED: The receiving or transmission is aborted. + /// EFI_TIMEOUT: The transmission timer expires and no more + /// specific information is available. + /// EFI_NETWORK_UNREACHABLE: The transmission fails + /// because an ICMP network unreachable error is received. + /// EFI_HOST_UNREACHABLE: The transmission fails because an + /// ICMP host unreachable error is received. + /// EFI_PROTOCOL_UNREACHABLE: The transmission fails + /// because an ICMP protocol unreachable error is received. + /// EFI_PORT_UNREACHABLE: The transmission fails and an + /// ICMP port unreachable error is received. + /// EFI_ICMP_ERROR: The transmission fails and some other + /// ICMP error is received. + /// EFI_DEVICE_ERROR: An unexpected system or network error occurs. + /// EFI_NO_MEDIA: There was a media error. + /// + EFI_TCP4_COMPLETION_TOKEN CompletionToken; + union { + /// + /// When this token is used for receiving, RxData is a pointer to EFI_TCP4_RECEIVE_DATA. + /// + EFI_TCP4_RECEIVE_DATA *RxData; + /// + /// When this token is used for transmitting, TxData is a pointer to EFI_TCP4_TRANSMIT_DATA. + /// + EFI_TCP4_TRANSMIT_DATA *TxData; + } Packet; +} EFI_TCP4_IO_TOKEN; + +typedef struct { + EFI_TCP4_COMPLETION_TOKEN CompletionToken; + BOOLEAN AbortOnClose; +} EFI_TCP4_CLOSE_TOKEN; + +// +// Interface definition for TCP4 protocol +// + +/** + Get the current operational status. + + @param This The pointer to the EFI_TCP4_PROTOCOL instance. + @param Tcp4State The pointer to the buffer to receive the current TCP state. + @param Tcp4ConfigData The pointer to the buffer to receive the current TCP configuration. + @param Ip4ModeData The pointer to the buffer to receive the current IPv4 configuration + data used by the TCPv4 instance. + @param MnpConfigData The pointer to the buffer to receive the current MNP configuration + data used indirectly by the TCPv4 instance. + @param SnpModeData The pointer to the buffer to receive the current SNP configuration + data used indirectly by the TCPv4 instance. + + @retval EFI_SUCCESS The mode data was read. + @retval EFI_INVALID_PARAMETER This is NULL. + @retval EFI_NOT_STARTED No configuration data is available because this instance hasn't + been started. + +**/ +typedef +EFI_STATUS +(EFIAPI *EFI_TCP4_GET_MODE_DATA)( + IN EFI_TCP4_PROTOCOL *This, + OUT EFI_TCP4_CONNECTION_STATE *Tcp4State OPTIONAL, + OUT EFI_TCP4_CONFIG_DATA *Tcp4ConfigData OPTIONAL, + OUT EFI_IP4_MODE_DATA *Ip4ModeData OPTIONAL, + OUT EFI_MANAGED_NETWORK_CONFIG_DATA *MnpConfigData OPTIONAL, + OUT EFI_SIMPLE_NETWORK_MODE *SnpModeData OPTIONAL + ); + +/** + Initialize or brutally reset the operational parameters for this EFI TCPv4 instance. + + @param This The pointer to the EFI_TCP4_PROTOCOL instance. + @param Tcp4ConfigData The pointer to the configure data to configure the instance. + + @retval EFI_SUCCESS The operational settings are set, changed, or reset + successfully. + @retval EFI_INVALID_PARAMETER Some parameter is invalid. + @retval EFI_NO_MAPPING When using a default address, configuration (through + DHCP, BOOTP, RARP, etc.) is not finished yet. + @retval EFI_ACCESS_DENIED Configuring TCP instance when it is configured without + calling Configure() with NULL to reset it. + @retval EFI_DEVICE_ERROR An unexpected network or system error occurred. + @retval EFI_UNSUPPORTED One or more of the control options are not supported in + the implementation. + @retval EFI_OUT_OF_RESOURCES Could not allocate enough system resources when + executing Configure(). + +**/ +typedef +EFI_STATUS +(EFIAPI *EFI_TCP4_CONFIGURE)( + IN EFI_TCP4_PROTOCOL *This, + IN EFI_TCP4_CONFIG_DATA *TcpConfigData OPTIONAL + ); + + +/** + Add or delete a route entry to the route table + + @param This The pointer to the EFI_TCP4_PROTOCOL instance. + @param DeleteRoute Set it to TRUE to delete this route from the routing table. Set it to + FALSE to add this route to the routing table. + DestinationAddress and SubnetMask are used as the + keywords to search route entry. + @param SubnetAddress The destination network. + @param SubnetMask The subnet mask of the destination network. + @param GatewayAddress The gateway address for this route. It must be on the same + subnet with the station address unless a direct route is specified. + + @retval EFI_SUCCESS The operation completed successfully. + @retval EFI_NOT_STARTED The EFI TCPv4 Protocol instance has not been configured. + @retval EFI_NO_MAPPING When using a default address, configuration (DHCP, BOOTP, + RARP, etc.) is not finished yet. + @retval EFI_INVALID_PARAMETER One or more of the following conditions is TRUE: + - This is NULL. + - SubnetAddress is NULL. + - SubnetMask is NULL. + - GatewayAddress is NULL. + - *SubnetAddress is not NULL a valid subnet address. + - *SubnetMask is not a valid subnet mask. + - *GatewayAddress is not a valid unicast IP address or it + is not in the same subnet. + @retval EFI_OUT_OF_RESOURCES Could not allocate enough resources to add the entry to the + routing table. + @retval EFI_NOT_FOUND This route is not in the routing table. + @retval EFI_ACCESS_DENIED The route is already defined in the routing table. + @retval EFI_UNSUPPORTED The TCP driver does not support this operation. + +**/ +typedef +EFI_STATUS +(EFIAPI *EFI_TCP4_ROUTES)( + IN EFI_TCP4_PROTOCOL *This, + IN BOOLEAN DeleteRoute, + IN EFI_IPv4_ADDRESS *SubnetAddress, + IN EFI_IPv4_ADDRESS *SubnetMask, + IN EFI_IPv4_ADDRESS *GatewayAddress + ); + +/** + Initiate a nonblocking TCP connection request for an active TCP instance. + + @param This The pointer to the EFI_TCP4_PROTOCOL instance. + @param ConnectionToken The pointer to the connection token to return when the TCP three + way handshake finishes. + + @retval EFI_SUCCESS The connection request is successfully initiated and the state + of this TCPv4 instance has been changed to Tcp4StateSynSent. + @retval EFI_NOT_STARTED This EFI TCPv4 Protocol instance has not been configured. + @retval EFI_ACCESS_DENIED One or more of the following conditions are TRUE: + - This instance is not configured as an active one. + - This instance is not in Tcp4StateClosed state. + @retval EFI_INVALID_PARAMETER One or more of the following are TRUE: + - This is NULL. + - ConnectionToken is NULL. + - ConnectionToken->CompletionToken.Event is NULL. + @retval EFI_OUT_OF_RESOURCES The driver can't allocate enough resource to initiate the activ eopen. + @retval EFI_DEVICE_ERROR An unexpected system or network error occurred. + +**/ +typedef +EFI_STATUS +(EFIAPI *EFI_TCP4_CONNECT)( + IN EFI_TCP4_PROTOCOL *This, + IN EFI_TCP4_CONNECTION_TOKEN *ConnectionToken + ); + + +/** + Listen on the passive instance to accept an incoming connection request. This is a nonblocking operation. + + @param This The pointer to the EFI_TCP4_PROTOCOL instance. + @param ListenToken The pointer to the listen token to return when operation finishes. + + @retval EFI_SUCCESS The listen token has been queued successfully. + @retval EFI_NOT_STARTED This EFI TCPv4 Protocol instance has not been configured. + @retval EFI_ACCESS_DENIED One or more of the following are TRUE: + - This instance is not a passive instance. + - This instance is not in Tcp4StateListen state. + - The same listen token has already existed in the listen + token queue of this TCP instance. + @retval EFI_INVALID_PARAMETER One or more of the following are TRUE: + - This is NULL. + - ListenToken is NULL. + - ListentToken->CompletionToken.Event is NULL. + @retval EFI_OUT_OF_RESOURCES Could not allocate enough resource to finish the operation. + @retval EFI_DEVICE_ERROR Any unexpected and not belonged to above category error. + +**/ +typedef +EFI_STATUS +(EFIAPI *EFI_TCP4_ACCEPT)( + IN EFI_TCP4_PROTOCOL *This, + IN EFI_TCP4_LISTEN_TOKEN *ListenToken + ); + +/** + Queues outgoing data into the transmit queue. + + @param This The pointer to the EFI_TCP4_PROTOCOL instance. + @param Token The pointer to the completion token to queue to the transmit queue. + + @retval EFI_SUCCESS The data has been queued for transmission. + @retval EFI_NOT_STARTED This EFI TCPv4 Protocol instance has not been configured. + @retval EFI_NO_MAPPING When using a default address, configuration (DHCP, BOOTP, + RARP, etc.) is not finished yet. + @retval EFI_INVALID_PARAMETER One or more of the following are TRUE: + - This is NULL. + - Token is NULL. + - Token->CompletionToken.Event is NULL. + - Token->Packet.TxData is NULL L. + - Token->Packet.FragmentCount is zero. + - Token->Packet.DataLength is not equal to the sum of fragment lengths. + @retval EFI_ACCESS_DENIED One or more of the following conditions is TRUE: + - A transmit completion token with the same Token->CompletionToken.Event + was already in the transmission queue. + - The current instance is in Tcp4StateClosed state. + - The current instance is a passive one and it is in + Tcp4StateListen state. + - User has called Close() to disconnect this connection. + @retval EFI_NOT_READY The completion token could not be queued because the + transmit queue is full. + @retval EFI_OUT_OF_RESOURCES Could not queue the transmit data because of resource + shortage. + @retval EFI_NETWORK_UNREACHABLE There is no route to the destination network or address. + +**/ +typedef +EFI_STATUS +(EFIAPI *EFI_TCP4_TRANSMIT)( + IN EFI_TCP4_PROTOCOL *This, + IN EFI_TCP4_IO_TOKEN *Token + ); + + +/** + Places an asynchronous receive request into the receiving queue. + + @param This The pointer to the EFI_TCP4_PROTOCOL instance. + @param Token The pointer to a token that is associated with the receive data + descriptor. + + @retval EFI_SUCCESS The receive completion token was cached. + @retval EFI_NOT_STARTED This EFI TCPv4 Protocol instance has not been configured. + @retval EFI_NO_MAPPING When using a default address, configuration (DHCP, BOOTP, RARP, + etc.) is not finished yet. + @retval EFI_INVALID_PARAMETER One or more of the following conditions is TRUE: + - This is NULL. + - Token is NULL. + - Token->CompletionToken.Event is NULL. + - Token->Packet.RxData is NULL. + - Token->Packet.RxData->DataLength is 0. + - The Token->Packet.RxData->DataLength is not + the sum of all FragmentBuffer length in FragmentTable. + @retval EFI_OUT_OF_RESOURCES The receive completion token could not be queued due to a lack of + system resources (usually memory). + @retval EFI_DEVICE_ERROR An unexpected system or network error occurred. + @retval EFI_ACCESS_DENIED One or more of the following conditions is TRUE: + - A receive completion token with the same Token- + >CompletionToken.Event was already in the receive + queue. + - The current instance is in Tcp4StateClosed state. + - The current instance is a passive one and it is in + Tcp4StateListen state. + - User has called Close() to disconnect this connection. + @retval EFI_CONNECTION_FIN The communication peer has closed the connection and there is + no any buffered data in the receive buffer of this instance. + @retval EFI_NOT_READY The receive request could not be queued because the receive queue is full. + +**/ +typedef +EFI_STATUS +(EFIAPI *EFI_TCP4_RECEIVE)( + IN EFI_TCP4_PROTOCOL *This, + IN EFI_TCP4_IO_TOKEN *Token + ); + +/** + Disconnecting a TCP connection gracefully or reset a TCP connection. This function is a + nonblocking operation. + + @param This The pointer to the EFI_TCP4_PROTOCOL instance. + @param CloseToken The pointer to the close token to return when operation finishes. + + @retval EFI_SUCCESS The Close() is called successfully. + @retval EFI_NOT_STARTED This EFI TCPv4 Protocol instance has not been configured. + @retval EFI_ACCESS_DENIED One or more of the following are TRUE: + - Configure() has been called with + TcpConfigData set to NULL and this function has + not returned. + - Previous Close() call on this instance has not + finished. + @retval EFI_INVALID_PARAMETER One or more of the following are TRUE: + - This is NULL. + - CloseToken is NULL. + - CloseToken->CompletionToken.Event is NULL. + @retval EFI_OUT_OF_RESOURCES Could not allocate enough resource to finish the operation. + @retval EFI_DEVICE_ERROR Any unexpected and not belonged to above category error. + +**/ +typedef +EFI_STATUS +(EFIAPI *EFI_TCP4_CLOSE)( + IN EFI_TCP4_PROTOCOL *This, + IN EFI_TCP4_CLOSE_TOKEN *CloseToken + ); + +/** + Abort an asynchronous connection, listen, transmission or receive request. + + @param This The pointer to the EFI_TCP4_PROTOCOL instance. + @param Token The pointer to a token that has been issued by + EFI_TCP4_PROTOCOL.Connect(), + EFI_TCP4_PROTOCOL.Accept(), + EFI_TCP4_PROTOCOL.Transmit() or + EFI_TCP4_PROTOCOL.Receive(). If NULL, all pending + tokens issued by above four functions will be aborted. Type + EFI_TCP4_COMPLETION_TOKEN is defined in + EFI_TCP4_PROTOCOL.Connect(). + + @retval EFI_SUCCESS The asynchronous I/O request is aborted and Token->Event + is signaled. + @retval EFI_INVALID_PARAMETER This is NULL. + @retval EFI_NOT_STARTED This instance hasn't been configured. + @retval EFI_NO_MAPPING When using the default address, configuration + (DHCP, BOOTP,RARP, etc.) hasn't finished yet. + @retval EFI_NOT_FOUND The asynchronous I/O request isn't found in the + transmission or receive queue. It has either + completed or wasn't issued by Transmit() and Receive(). + @retval EFI_UNSUPPORTED The implementation does not support this function. + +**/ +typedef +EFI_STATUS +(EFIAPI *EFI_TCP4_CANCEL)( + IN EFI_TCP4_PROTOCOL *This, + IN EFI_TCP4_COMPLETION_TOKEN *Token OPTIONAL + ); + + +/** + Poll to receive incoming data and transmit outgoing segments. + + @param This The pointer to the EFI_TCP4_PROTOCOL instance. + + @retval EFI_SUCCESS Incoming or outgoing data was processed. + @retval EFI_INVALID_PARAMETER This is NULL. + @retval EFI_DEVICE_ERROR An unexpected system or network error occurred. + @retval EFI_NOT_READY No incoming or outgoing data is processed. + @retval EFI_TIMEOUT Data was dropped out of the transmission or receive queue. + Consider increasing the polling rate. + +**/ +typedef +EFI_STATUS +(EFIAPI *EFI_TCP4_POLL)( + IN EFI_TCP4_PROTOCOL *This + ); + +/// +/// The EFI_TCP4_PROTOCOL defines the EFI TCPv4 Protocol child to be used by +/// any network drivers or applications to send or receive data stream. +/// It can either listen on a specified port as a service or actively connected +/// to remote peer as a client. Each instance has its own independent settings, +/// such as the routing table. +/// +struct _EFI_TCP4_PROTOCOL { + EFI_TCP4_GET_MODE_DATA GetModeData; + EFI_TCP4_CONFIGURE Configure; + EFI_TCP4_ROUTES Routes; + EFI_TCP4_CONNECT Connect; + EFI_TCP4_ACCEPT Accept; + EFI_TCP4_TRANSMIT Transmit; + EFI_TCP4_RECEIVE Receive; + EFI_TCP4_CLOSE Close; + EFI_TCP4_CANCEL Cancel; + EFI_TCP4_POLL Poll; +}; + +extern EFI_GUID gEfiTcp4ServiceBindingProtocolGuid; +extern EFI_GUID gEfiTcp4ProtocolGuid; + +#endif diff --git a/src/include/ipxe/efi/Protocol/Udp4.h b/src/include/ipxe/efi/Protocol/Udp4.h new file mode 100644 index 000000000..3c61db8c2 --- /dev/null +++ b/src/include/ipxe/efi/Protocol/Udp4.h @@ -0,0 +1,447 @@ +/** @file + UDP4 Service Binding Protocol as defined in UEFI specification. + + The EFI UDPv4 Protocol provides simple packet-oriented services + to transmit and receive UDP packets. + +Copyright (c) 2006 - 2014, Intel Corporation. All rights reserved.
+This program and the accompanying materials are licensed and made available under +the terms and conditions of the BSD License that accompanies this distribution. +The full text of the license may be found at +http://opensource.org/licenses/bsd-license.php. + +THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS, +WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED. + + @par Revision Reference: + This Protocol is introduced in UEFI Specification 2.0. + +**/ + +#ifndef __EFI_UDP4_PROTOCOL_H__ +#define __EFI_UDP4_PROTOCOL_H__ + +FILE_LICENCE ( BSD3 ); + +#include +// +//GUID definitions +// +#define EFI_UDP4_SERVICE_BINDING_PROTOCOL_GUID \ + { \ + 0x83f01464, 0x99bd, 0x45e5, {0xb3, 0x83, 0xaf, 0x63, 0x05, 0xd8, 0xe9, 0xe6 } \ + } + +#define EFI_UDP4_PROTOCOL_GUID \ + { \ + 0x3ad9df29, 0x4501, 0x478d, {0xb1, 0xf8, 0x7f, 0x7f, 0xe7, 0x0e, 0x50, 0xf3 } \ + } + +typedef struct _EFI_UDP4_PROTOCOL EFI_UDP4_PROTOCOL; + +/// +/// EFI_UDP4_SERVICE_POINT is deprecated in the UEFI 2.4B and should not be used any more. +/// The definition in here is only present to provide backwards compatability. +/// +typedef struct { + EFI_HANDLE InstanceHandle; + EFI_IPv4_ADDRESS LocalAddress; + UINT16 LocalPort; + EFI_IPv4_ADDRESS RemoteAddress; + UINT16 RemotePort; +} EFI_UDP4_SERVICE_POINT; + +/// +/// EFI_UDP4_VARIABLE_DATA is deprecated in the UEFI 2.4B and should not be used any more. +/// The definition in here is only present to provide backwards compatability. +/// +typedef struct { + EFI_HANDLE DriverHandle; + UINT32 ServiceCount; + EFI_UDP4_SERVICE_POINT Services[1]; +} EFI_UDP4_VARIABLE_DATA; + +typedef struct { + UINT32 FragmentLength; + VOID *FragmentBuffer; +} EFI_UDP4_FRAGMENT_DATA; + +typedef struct { + EFI_IPv4_ADDRESS SourceAddress; + UINT16 SourcePort; + EFI_IPv4_ADDRESS DestinationAddress; + UINT16 DestinationPort; +} EFI_UDP4_SESSION_DATA; +typedef struct { + // + // Receiving Filters + // + BOOLEAN AcceptBroadcast; + BOOLEAN AcceptPromiscuous; + BOOLEAN AcceptAnyPort; + BOOLEAN AllowDuplicatePort; + // + // I/O parameters + // + UINT8 TypeOfService; + UINT8 TimeToLive; + BOOLEAN DoNotFragment; + UINT32 ReceiveTimeout; + UINT32 TransmitTimeout; + // + // Access Point + // + BOOLEAN UseDefaultAddress; + EFI_IPv4_ADDRESS StationAddress; + EFI_IPv4_ADDRESS SubnetMask; + UINT16 StationPort; + EFI_IPv4_ADDRESS RemoteAddress; + UINT16 RemotePort; +} EFI_UDP4_CONFIG_DATA; + +typedef struct { + EFI_UDP4_SESSION_DATA *UdpSessionData; //OPTIONAL + EFI_IPv4_ADDRESS *GatewayAddress; //OPTIONAL + UINT32 DataLength; + UINT32 FragmentCount; + EFI_UDP4_FRAGMENT_DATA FragmentTable[1]; +} EFI_UDP4_TRANSMIT_DATA; + +typedef struct { + EFI_TIME TimeStamp; + EFI_EVENT RecycleSignal; + EFI_UDP4_SESSION_DATA UdpSession; + UINT32 DataLength; + UINT32 FragmentCount; + EFI_UDP4_FRAGMENT_DATA FragmentTable[1]; +} EFI_UDP4_RECEIVE_DATA; + + +typedef struct { + EFI_EVENT Event; + EFI_STATUS Status; + union { + EFI_UDP4_RECEIVE_DATA *RxData; + EFI_UDP4_TRANSMIT_DATA *TxData; + } Packet; +} EFI_UDP4_COMPLETION_TOKEN; + +/** + Reads the current operational settings. + + The GetModeData() function copies the current operational settings of this EFI + UDPv4 Protocol instance into user-supplied buffers. This function is used + optionally to retrieve the operational mode data of underlying networks or + drivers. + + @param This The pointer to the EFI_UDP4_PROTOCOL instance. + @param Udp4ConfigData The pointer to the buffer to receive the current configuration data. + @param Ip4ModeData The pointer to the EFI IPv4 Protocol mode data structure. + @param MnpConfigData The pointer to the managed network configuration data structure. + @param SnpModeData The pointer to the simple network mode data structure. + + @retval EFI_SUCCESS The mode data was read. + @retval EFI_NOT_STARTED When Udp4ConfigData is queried, no configuration data is + available because this instance has not been started. + @retval EFI_INVALID_PARAMETER This is NULL. + +**/ +typedef +EFI_STATUS +(EFIAPI *EFI_UDP4_GET_MODE_DATA)( + IN EFI_UDP4_PROTOCOL *This, + OUT EFI_UDP4_CONFIG_DATA *Udp4ConfigData OPTIONAL, + OUT EFI_IP4_MODE_DATA *Ip4ModeData OPTIONAL, + OUT EFI_MANAGED_NETWORK_CONFIG_DATA *MnpConfigData OPTIONAL, + OUT EFI_SIMPLE_NETWORK_MODE *SnpModeData OPTIONAL + ); + + +/** + Initializes, changes, or resets the operational parameters for this instance of the EFI UDPv4 + Protocol. + + The Configure() function is used to do the following: + * Initialize and start this instance of the EFI UDPv4 Protocol. + * Change the filtering rules and operational parameters. + * Reset this instance of the EFI UDPv4 Protocol. + Until these parameters are initialized, no network traffic can be sent or + received by this instance. This instance can be also reset by calling Configure() + with UdpConfigData set to NULL. Once reset, the receiving queue and transmitting + queue are flushed and no traffic is allowed through this instance. + With different parameters in UdpConfigData, Configure() can be used to bind + this instance to specified port. + + @param This The pointer to the EFI_UDP4_PROTOCOL instance. + @param Udp4ConfigData The pointer to the buffer to receive the current configuration data. + + @retval EFI_SUCCESS The configuration settings were set, changed, or reset successfully. + @retval EFI_NO_MAPPING When using a default address, configuration (DHCP, BOOTP, + RARP, etc.) is not finished yet. + @retval EFI_INVALID_PARAMETER This is NULL. + @retval EFI_INVALID_PARAMETER UdpConfigData.StationAddress is not a valid unicast IPv4 address. + @retval EFI_INVALID_PARAMETER UdpConfigData.SubnetMask is not a valid IPv4 address mask. The subnet + mask must be contiguous. + @retval EFI_INVALID_PARAMETER UdpConfigData.RemoteAddress is not a valid unicast IPv4 address if it + is not zero. + @retval EFI_ALREADY_STARTED The EFI UDPv4 Protocol instance is already started/configured + and must be stopped/reset before it can be reconfigured. + @retval EFI_ACCESS_DENIED UdpConfigData. AllowDuplicatePort is FALSE + and UdpConfigData.StationPort is already used by + other instance. + @retval EFI_OUT_OF_RESOURCES The EFI UDPv4 Protocol driver cannot allocate memory for this + EFI UDPv4 Protocol instance. + @retval EFI_DEVICE_ERROR An unexpected network or system error occurred and this instance + was not opened. + +**/ +typedef +EFI_STATUS +(EFIAPI *EFI_UDP4_CONFIGURE)( + IN EFI_UDP4_PROTOCOL *This, + IN EFI_UDP4_CONFIG_DATA *UdpConfigData OPTIONAL + ); + +/** + Joins and leaves multicast groups. + + The Groups() function is used to enable and disable the multicast group + filtering. If the JoinFlag is FALSE and the MulticastAddress is NULL, then all + currently joined groups are left. + + @param This The pointer to the EFI_UDP4_PROTOCOL instance. + @param JoinFlag Set to TRUE to join a multicast group. Set to FALSE to leave one + or all multicast groups. + @param MulticastAddress The pointer to multicast group address to join or leave. + + @retval EFI_SUCCESS The operation completed successfully. + @retval EFI_NOT_STARTED The EFI UDPv4 Protocol instance has not been started. + @retval EFI_NO_MAPPING When using a default address, configuration (DHCP, BOOTP, + RARP, etc.) is not finished yet. + @retval EFI_OUT_OF_RESOURCES Could not allocate resources to join the group. + @retval EFI_INVALID_PARAMETER One or more of the following conditions is TRUE: + - This is NULL. + - JoinFlag is TRUE and MulticastAddress is NULL. + - JoinFlag is TRUE and *MulticastAddress is not + a valid multicast address. + @retval EFI_ALREADY_STARTED The group address is already in the group table (when + JoinFlag is TRUE). + @retval EFI_NOT_FOUND The group address is not in the group table (when JoinFlag is + FALSE). + @retval EFI_DEVICE_ERROR An unexpected system or network error occurred. + +**/ +typedef +EFI_STATUS +(EFIAPI *EFI_UDP4_GROUPS)( + IN EFI_UDP4_PROTOCOL *This, + IN BOOLEAN JoinFlag, + IN EFI_IPv4_ADDRESS *MulticastAddress OPTIONAL + ); + +/** + Adds and deletes routing table entries. + + The Routes() function adds a route to or deletes a route from the routing table. + Routes are determined by comparing the SubnetAddress with the destination IP + address and arithmetically AND-ing it with the SubnetMask. The gateway address + must be on the same subnet as the configured station address. + The default route is added with SubnetAddress and SubnetMask both set to 0.0.0.0. + The default route matches all destination IP addresses that do not match any + other routes. + A zero GatewayAddress is a nonroute. Packets are sent to the destination IP + address if it can be found in the Address Resolution Protocol (ARP) cache or + on the local subnet. One automatic nonroute entry will be inserted into the + routing table for outgoing packets that are addressed to a local subnet + (gateway address of 0.0.0.0). + Each instance of the EFI UDPv4 Protocol has its own independent routing table. + Instances of the EFI UDPv4 Protocol that use the default IP address will also + have copies of the routing table provided by the EFI_IP4_CONFIG_PROTOCOL. These + copies will be updated automatically whenever the IP driver reconfigures its + instances; as a result, the previous modification to these copies will be lost. + + @param This The pointer to the EFI_UDP4_PROTOCOL instance. + @param DeleteRoute Set to TRUE to delete this route from the routing table. + Set to FALSE to add this route to the routing table. + @param SubnetAddress The destination network address that needs to be routed. + @param SubnetMask The subnet mask of SubnetAddress. + @param GatewayAddress The gateway IP address for this route. + + @retval EFI_SUCCESS The operation completed successfully. + @retval EFI_NOT_STARTED The EFI UDPv4 Protocol instance has not been started. + @retval EFI_NO_MAPPING When using a default address, configuration (DHCP, BOOTP, + - RARP, etc.) is not finished yet. + @retval EFI_INVALID_PARAMETER One or more parameters are invalid. + @retval EFI_OUT_OF_RESOURCES Could not add the entry to the routing table. + @retval EFI_NOT_FOUND This route is not in the routing table. + @retval EFI_ACCESS_DENIED The route is already defined in the routing table. + +**/ +typedef +EFI_STATUS +(EFIAPI *EFI_UDP4_ROUTES)( + IN EFI_UDP4_PROTOCOL *This, + IN BOOLEAN DeleteRoute, + IN EFI_IPv4_ADDRESS *SubnetAddress, + IN EFI_IPv4_ADDRESS *SubnetMask, + IN EFI_IPv4_ADDRESS *GatewayAddress + ); + +/** + Polls for incoming data packets and processes outgoing data packets. + + The Poll() function can be used by network drivers and applications to increase + the rate that data packets are moved between the communications device and the + transmit and receive queues. + In some systems, the periodic timer event in the managed network driver may not + poll the underlying communications device fast enough to transmit and/or receive + all data packets without missing incoming packets or dropping outgoing packets. + Drivers and applications that are experiencing packet loss should try calling + the Poll() function more often. + + @param This The pointer to the EFI_UDP4_PROTOCOL instance. + + @retval EFI_SUCCESS Incoming or outgoing data was processed. + @retval EFI_INVALID_PARAMETER This is NULL. + @retval EFI_DEVICE_ERROR An unexpected system or network error occurred. + @retval EFI_TIMEOUT Data was dropped out of the transmit and/or receive queue. + +**/ +typedef +EFI_STATUS +(EFIAPI *EFI_UDP4_POLL)( + IN EFI_UDP4_PROTOCOL *This + ); + +/** + Places an asynchronous receive request into the receiving queue. + + The Receive() function places a completion token into the receive packet queue. + This function is always asynchronous. + The caller must fill in the Token.Event field in the completion token, and this + field cannot be NULL. When the receive operation completes, the EFI UDPv4 Protocol + driver updates the Token.Status and Token.Packet.RxData fields and the Token.Event + is signaled. Providing a proper notification function and context for the event + will enable the user to receive the notification and receiving status. That + notification function is guaranteed to not be re-entered. + + @param This The pointer to the EFI_UDP4_PROTOCOL instance. + @param Token The pointer to a token that is associated with the receive data + descriptor. + + @retval EFI_SUCCESS The receive completion token was cached. + @retval EFI_NOT_STARTED This EFI UDPv4 Protocol instance has not been started. + @retval EFI_NO_MAPPING When using a default address, configuration (DHCP, BOOTP, RARP, etc.) + is not finished yet. + @retval EFI_INVALID_PARAMETER This is NULL. + @retval EFI_INVALID_PARAMETER Token is NULL. + @retval EFI_INVALID_PARAMETER Token.Event is NULL. + @retval EFI_OUT_OF_RESOURCES The receive completion token could not be queued due to a lack of system + resources (usually memory). + @retval EFI_DEVICE_ERROR An unexpected system or network error occurred. + @retval EFI_ACCESS_DENIED A receive completion token with the same Token.Event was already in + the receive queue. + @retval EFI_NOT_READY The receive request could not be queued because the receive queue is full. + +**/ +typedef +EFI_STATUS +(EFIAPI *EFI_UDP4_RECEIVE)( + IN EFI_UDP4_PROTOCOL *This, + IN EFI_UDP4_COMPLETION_TOKEN *Token + ); + +/** + Queues outgoing data packets into the transmit queue. + + The Transmit() function places a sending request to this instance of the EFI + UDPv4 Protocol, alongside the transmit data that was filled by the user. Whenever + the packet in the token is sent out or some errors occur, the Token.Event will + be signaled and Token.Status is updated. Providing a proper notification function + and context for the event will enable the user to receive the notification and + transmitting status. + + @param This The pointer to the EFI_UDP4_PROTOCOL instance. + @param Token The pointer to the completion token that will be placed into the + transmit queue. + + @retval EFI_SUCCESS The data has been queued for transmission. + @retval EFI_NOT_STARTED This EFI UDPv4 Protocol instance has not been started. + @retval EFI_NO_MAPPING When using a default address, configuration (DHCP, BOOTP, + RARP, etc.) is not finished yet. + @retval EFI_INVALID_PARAMETER One or more parameters are invalid. + @retval EFI_ACCESS_DENIED The transmit completion token with the same + Token.Event was already in the transmit queue. + @retval EFI_NOT_READY The completion token could not be queued because the + transmit queue is full. + @retval EFI_OUT_OF_RESOURCES Could not queue the transmit data. + @retval EFI_NOT_FOUND There is no route to the destination network or address. + @retval EFI_BAD_BUFFER_SIZE The data length is greater than the maximum UDP packet + size. Or the length of the IP header + UDP header + data + length is greater than MTU if DoNotFragment is TRUE. + +**/ +typedef +EFI_STATUS +(EFIAPI *EFI_UDP4_TRANSMIT)( + IN EFI_UDP4_PROTOCOL *This, + IN EFI_UDP4_COMPLETION_TOKEN *Token + ); + +/** + Aborts an asynchronous transmit or receive request. + + The Cancel() function is used to abort a pending transmit or receive request. + If the token is in the transmit or receive request queues, after calling this + function, Token.Status will be set to EFI_ABORTED and then Token.Event will be + signaled. If the token is not in one of the queues, which usually means that + the asynchronous operation has completed, this function will not signal the + token and EFI_NOT_FOUND is returned. + + @param This The pointer to the EFI_UDP4_PROTOCOL instance. + @param Token The pointer to a token that has been issued by + EFI_UDP4_PROTOCOL.Transmit() or + EFI_UDP4_PROTOCOL.Receive().If NULL, all pending + tokens are aborted. + + @retval EFI_SUCCESS The asynchronous I/O request was aborted and Token.Event + was signaled. When Token is NULL, all pending requests are + aborted and their events are signaled. + @retval EFI_INVALID_PARAMETER This is NULL. + @retval EFI_NOT_STARTED This instance has not been started. + @retval EFI_NO_MAPPING When using the default address, configuration (DHCP, BOOTP, + RARP, etc.) is not finished yet. + @retval EFI_NOT_FOUND When Token is not NULL, the asynchronous I/O request was + not found in the transmit or receive queue. It has either completed + or was not issued by Transmit() and Receive(). + +**/ +typedef +EFI_STATUS +(EFIAPI *EFI_UDP4_CANCEL)( + IN EFI_UDP4_PROTOCOL *This, + IN EFI_UDP4_COMPLETION_TOKEN *Token OPTIONAL + ); + +/// +/// The EFI_UDP4_PROTOCOL defines an EFI UDPv4 Protocol session that can be used +/// by any network drivers, applications, or daemons to transmit or receive UDP packets. +/// This protocol instance can either be bound to a specified port as a service or +/// connected to some remote peer as an active client. Each instance has its own settings, +/// such as the routing table and group table, which are independent from each other. +/// +struct _EFI_UDP4_PROTOCOL { + EFI_UDP4_GET_MODE_DATA GetModeData; + EFI_UDP4_CONFIGURE Configure; + EFI_UDP4_GROUPS Groups; + EFI_UDP4_ROUTES Routes; + EFI_UDP4_TRANSMIT Transmit; + EFI_UDP4_RECEIVE Receive; + EFI_UDP4_CANCEL Cancel; + EFI_UDP4_POLL Poll; +}; + +extern EFI_GUID gEfiUdp4ServiceBindingProtocolGuid; +extern EFI_GUID gEfiUdp4ProtocolGuid; + +#endif diff --git a/src/include/ipxe/efi/Protocol/VlanConfig.h b/src/include/ipxe/efi/Protocol/VlanConfig.h new file mode 100644 index 000000000..928faded2 --- /dev/null +++ b/src/include/ipxe/efi/Protocol/VlanConfig.h @@ -0,0 +1,145 @@ +/** @file + EFI VLAN Config protocol is to provide manageability interface for VLAN configuration. + + Copyright (c) 2009, Intel Corporation. All rights reserved.
+ This program and the accompanying materials + are licensed and made available under the terms and conditions of the BSD License + which accompanies this distribution. The full text of the license may be found at + http://opensource.org/licenses/bsd-license.php + + THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS, + WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED. + + @par Revision Reference: + This Protocol is introduced in UEFI Specification 2.2 + +**/ + +#ifndef __EFI_VLANCONFIG_PROTOCOL_H__ +#define __EFI_VLANCONFIG_PROTOCOL_H__ + +FILE_LICENCE ( BSD3 ); + + +#define EFI_VLAN_CONFIG_PROTOCOL_GUID \ + { \ + 0x9e23d768, 0xd2f3, 0x4366, {0x9f, 0xc3, 0x3a, 0x7a, 0xba, 0x86, 0x43, 0x74 } \ + } + +typedef struct _EFI_VLAN_CONFIG_PROTOCOL EFI_VLAN_CONFIG_PROTOCOL; + + +/// +/// EFI_VLAN_FIND_DATA +/// +typedef struct { + UINT16 VlanId; ///< Vlan Identifier. + UINT8 Priority; ///< Priority of this VLAN. +} EFI_VLAN_FIND_DATA; + + +/** + Create a VLAN device or modify the configuration parameter of an + already-configured VLAN. + + The Set() function is used to create a new VLAN device or change the VLAN + configuration parameters. If the VlanId hasn't been configured in the + physical Ethernet device, a new VLAN device will be created. If a VLAN with + this VlanId is already configured, then related configuration will be updated + as the input parameters. + + If VlanId is zero, the VLAN device will send and receive untagged frames. + Otherwise, the VLAN device will send and receive VLAN-tagged frames containing the VlanId. + If VlanId is out of scope of (0-4094), EFI_INVALID_PARAMETER is returned. + If Priority is out of the scope of (0-7), then EFI_INVALID_PARAMETER is returned. + If there is not enough system memory to perform the registration, then + EFI_OUT_OF_RESOURCES is returned. + + @param[in] This Points to the EFI_VLAN_CONFIG_PROTOCOL. + @param[in] VlanId A unique identifier (1-4094) of the VLAN which is being created + or modified, or zero (0). + @param[in] Priority 3 bit priority in VLAN header. Priority 0 is default value. If + VlanId is zero (0), Priority is ignored. + + @retval EFI_SUCCESS The VLAN is successfully configured. + @retval EFI_INVALID_PARAMETER One or more of following conditions is TRUE: + - This is NULL. + - VlanId is an invalid VLAN Identifier. + - Priority is invalid. + @retval EFI_OUT_OF_RESOURCES There is not enough system memory to perform the registration. + +**/ +typedef +EFI_STATUS +(EFIAPI *EFI_VLAN_CONFIG_SET)( + IN EFI_VLAN_CONFIG_PROTOCOL *This, + IN UINT16 VlanId, + IN UINT8 Priority + ); + +/** + Find configuration information for specified VLAN or all configured VLANs. + + The Find() function is used to find the configuration information for matching + VLAN and allocate a buffer into which those entries are copied. + + @param[in] This Points to the EFI_VLAN_CONFIG_PROTOCOL. + @param[in] VlanId Pointer to VLAN identifier. Set to NULL to find all + configured VLANs. + @param[out] NumberOfVlan The number of VLANs which is found by the specified criteria. + @param[out] Entries The buffer which receive the VLAN configuration. + + @retval EFI_SUCCESS The VLAN is successfully found. + @retval EFI_INVALID_PARAMETER One or more of following conditions is TRUE: + - This is NULL. + - Specified VlanId is invalid. + @retval EFI_NOT_FOUND No matching VLAN is found. + +**/ +typedef +EFI_STATUS +(EFIAPI *EFI_VLAN_CONFIG_FIND)( + IN EFI_VLAN_CONFIG_PROTOCOL *This, + IN UINT16 *VlanId OPTIONAL, + OUT UINT16 *NumberOfVlan, + OUT EFI_VLAN_FIND_DATA **Entries + ); + +/** + Remove the configured VLAN device. + + The Remove() function is used to remove the specified VLAN device. + If the VlanId is out of the scope of (0-4094), EFI_INVALID_PARAMETER is returned. + If specified VLAN hasn't been previously configured, EFI_NOT_FOUND is returned. + + @param[in] This Points to the EFI_VLAN_CONFIG_PROTOCOL. + @param[in] VlanId Identifier (0-4094) of the VLAN to be removed. + + @retval EFI_SUCCESS The VLAN is successfully removed. + @retval EFI_INVALID_PARAMETER One or more of following conditions is TRUE: + - This is NULL. + - VlanId is an invalid parameter. + @retval EFI_NOT_FOUND The to-be-removed VLAN does not exist. + +**/ +typedef +EFI_STATUS +(EFIAPI *EFI_VLAN_CONFIG_REMOVE)( + IN EFI_VLAN_CONFIG_PROTOCOL *This, + IN UINT16 VlanId + ); + +/// +/// EFI_VLAN_CONFIG_PROTOCOL +/// provide manageability interface for VLAN setting. The intended +/// VLAN tagging implementation is IEEE802.1Q. +/// +struct _EFI_VLAN_CONFIG_PROTOCOL { + EFI_VLAN_CONFIG_SET Set; + EFI_VLAN_CONFIG_FIND Find; + EFI_VLAN_CONFIG_REMOVE Remove; +}; + +extern EFI_GUID gEfiVlanConfigProtocolGuid; + +#endif diff --git a/src/include/ipxe/efi/efi.h b/src/include/ipxe/efi/efi.h index 4dff2a7b8..ab52dd9e0 100644 --- a/src/include/ipxe/efi/efi.h +++ b/src/include/ipxe/efi/efi.h @@ -153,19 +153,30 @@ struct efi_config_table { */ #define EEFI( efirc ) EPLATFORM ( EINFO_EPLATFORM, efirc ) +extern EFI_GUID efi_arp_protocol_guid; +extern EFI_GUID efi_arp_service_binding_protocol_guid; extern EFI_GUID efi_block_io_protocol_guid; extern EFI_GUID efi_bus_specific_driver_override_protocol_guid; extern EFI_GUID efi_component_name_protocol_guid; extern EFI_GUID efi_component_name2_protocol_guid; extern EFI_GUID efi_device_path_protocol_guid; +extern EFI_GUID efi_dhcp4_protocol_guid; +extern EFI_GUID efi_dhcp4_service_binding_protocol_guid; extern EFI_GUID efi_disk_io_protocol_guid; extern EFI_GUID efi_driver_binding_protocol_guid; extern EFI_GUID efi_graphics_output_protocol_guid; extern EFI_GUID efi_hii_config_access_protocol_guid; +extern EFI_GUID efi_ip4_protocol_guid; +extern EFI_GUID efi_ip4_config_protocol_guid; +extern EFI_GUID efi_ip4_service_binding_protocol_guid; extern EFI_GUID efi_load_file_protocol_guid; extern EFI_GUID efi_load_file2_protocol_guid; extern EFI_GUID efi_loaded_image_protocol_guid; extern EFI_GUID efi_loaded_image_device_path_protocol_guid; +extern EFI_GUID efi_managed_network_protocol_guid; +extern EFI_GUID efi_managed_network_service_binding_protocol_guid; +extern EFI_GUID efi_mtftp4_protocol_guid; +extern EFI_GUID efi_mtftp4_service_binding_protocol_guid; extern EFI_GUID efi_nii_protocol_guid; extern EFI_GUID efi_nii31_protocol_guid; extern EFI_GUID efi_pci_io_protocol_guid; @@ -174,6 +185,11 @@ extern EFI_GUID efi_pxe_base_code_protocol_guid; extern EFI_GUID efi_simple_file_system_protocol_guid; extern EFI_GUID efi_simple_network_protocol_guid; extern EFI_GUID efi_tcg_protocol_guid; +extern EFI_GUID efi_tcp4_protocol_guid; +extern EFI_GUID efi_tcp4_service_binding_protocol_guid; +extern EFI_GUID efi_udp4_protocol_guid; +extern EFI_GUID efi_udp4_service_binding_protocol_guid; +extern EFI_GUID efi_vlan_config_protocol_guid; extern EFI_HANDLE efi_image_handle; extern EFI_LOADED_IMAGE_PROTOCOL *efi_loaded_image; diff --git a/src/interface/efi/efi_debug.c b/src/interface/efi/efi_debug.c index c6b43e016..d23960140 100644 --- a/src/interface/efi/efi_debug.c +++ b/src/interface/efi/efi_debug.c @@ -42,6 +42,18 @@ FILE_LICENCE ( GPL2_OR_LATER ); static EFI_DEVICE_PATH_TO_TEXT_PROTOCOL *efidpt; EFI_REQUEST_PROTOCOL ( EFI_DEVICE_PATH_TO_TEXT_PROTOCOL, &efidpt ); +/** Iscsi4Dxe module GUID */ +static EFI_GUID efi_iscsi4_dxe_guid = { + 0x4579b72d, 0x7ec4, 0x4dd4, + { 0x84, 0x86, 0x08, 0x3c, 0x86, 0xb1, 0x82, 0xa7 } +}; + +/** VlanConfigDxe module GUID */ +static EFI_GUID efi_vlan_config_dxe_guid = { + 0xe4f61863, 0xfe2c, 0x4b56, + { 0xa8, 0xf4, 0x08, 0x51, 0x9b, 0xc4, 0x39, 0xdf } +}; + /** A well-known GUID */ struct efi_well_known_guid { /** GUID */ @@ -52,24 +64,40 @@ struct efi_well_known_guid { /** Well-known GUIDs */ static struct efi_well_known_guid efi_well_known_guids[] = { + { &efi_arp_protocol_guid, + "Arp" }, + { &efi_arp_service_binding_protocol_guid, + "ArpSb" }, { &efi_block_io_protocol_guid, "BlockIo" }, { &efi_bus_specific_driver_override_protocol_guid, "BusSpecificDriverOverride" }, - { &efi_component_name2_protocol_guid, - "ComponentName2" }, { &efi_component_name_protocol_guid, "ComponentName" }, + { &efi_component_name2_protocol_guid, + "ComponentName2" }, { &efi_device_path_protocol_guid, "DevicePath" }, { &efi_driver_binding_protocol_guid, "DriverBinding" }, + { &efi_dhcp4_protocol_guid, + "Dhcp4" }, + { &efi_dhcp4_service_binding_protocol_guid, + "Dhcp4Sb" }, { &efi_disk_io_protocol_guid, "DiskIo" }, { &efi_graphics_output_protocol_guid, "GraphicsOutput" }, { &efi_hii_config_access_protocol_guid, "HiiConfigAccess" }, + { &efi_ip4_protocol_guid, + "Ip4" }, + { &efi_ip4_config_protocol_guid, + "Ip4Config" }, + { &efi_ip4_service_binding_protocol_guid, + "Ip4Sb" }, + { &efi_iscsi4_dxe_guid, + "IScsi4Dxe" }, { &efi_load_file_protocol_guid, "LoadFile" }, { &efi_load_file2_protocol_guid, @@ -78,6 +106,14 @@ static struct efi_well_known_guid efi_well_known_guids[] = { "LoadedImage" }, { &efi_loaded_image_device_path_protocol_guid, "LoadedImageDevicePath"}, + { &efi_managed_network_protocol_guid, + "ManagedNetwork" }, + { &efi_managed_network_service_binding_protocol_guid, + "ManagedNetworkSb" }, + { &efi_mtftp4_protocol_guid, + "Mtftp4" }, + { &efi_mtftp4_service_binding_protocol_guid, + "Mtftp4Sb" }, { &efi_nii_protocol_guid, "Nii" }, { &efi_nii31_protocol_guid, @@ -94,6 +130,18 @@ static struct efi_well_known_guid efi_well_known_guids[] = { "SimpleNetwork" }, { &efi_tcg_protocol_guid, "Tcg" }, + { &efi_tcp4_protocol_guid, + "Tcp4" }, + { &efi_tcp4_service_binding_protocol_guid, + "Tcp4Sb" }, + { &efi_udp4_protocol_guid, + "Udp4" }, + { &efi_udp4_service_binding_protocol_guid, + "Udp4Sb" }, + { &efi_vlan_config_protocol_guid, + "VlanConfig" }, + { &efi_vlan_config_dxe_guid, + "VlanConfigDxe" }, }; /** diff --git a/src/interface/efi/efi_guid.c b/src/interface/efi/efi_guid.c index 458cbb297..52ba58ae4 100644 --- a/src/interface/efi/efi_guid.c +++ b/src/interface/efi/efi_guid.c @@ -20,19 +20,25 @@ FILE_LICENCE ( GPL2_OR_LATER ); #include +#include #include #include #include #include #include #include +#include #include #include #include #include +#include +#include #include #include #include +#include +#include #include #include #include @@ -40,6 +46,9 @@ FILE_LICENCE ( GPL2_OR_LATER ); #include #include #include +#include +#include +#include /** @file * @@ -47,6 +56,14 @@ FILE_LICENCE ( GPL2_OR_LATER ); * */ +/** ARP protocol GUID */ +EFI_GUID efi_arp_protocol_guid + = EFI_ARP_PROTOCOL_GUID; + +/** ARP service binding protocol GUID */ +EFI_GUID efi_arp_service_binding_protocol_guid + = EFI_ARP_SERVICE_BINDING_PROTOCOL_GUID; + /** Block I/O protocol GUID */ EFI_GUID efi_block_io_protocol_guid = EFI_BLOCK_IO_PROTOCOL_GUID; @@ -67,6 +84,14 @@ EFI_GUID efi_component_name2_protocol_guid EFI_GUID efi_device_path_protocol_guid = EFI_DEVICE_PATH_PROTOCOL_GUID; +/** DHCPv4 protocol GUID */ +EFI_GUID efi_dhcp4_protocol_guid + = EFI_DHCP4_PROTOCOL_GUID; + +/** DHCPv4 service binding protocol GUID */ +EFI_GUID efi_dhcp4_service_binding_protocol_guid + = EFI_DHCP4_SERVICE_BINDING_PROTOCOL_GUID; + /** Disk I/O protocol GUID */ EFI_GUID efi_disk_io_protocol_guid = EFI_DISK_IO_PROTOCOL_GUID; @@ -83,6 +108,18 @@ EFI_GUID efi_graphics_output_protocol_guid EFI_GUID efi_hii_config_access_protocol_guid = EFI_HII_CONFIG_ACCESS_PROTOCOL_GUID; +/** IPv4 protocol GUID */ +EFI_GUID efi_ip4_protocol_guid + = EFI_IP4_PROTOCOL_GUID; + +/** IPv4 configuration protocol GUID */ +EFI_GUID efi_ip4_config_protocol_guid + = EFI_IP4_CONFIG_PROTOCOL_GUID; + +/** IPv4 service binding protocol GUID */ +EFI_GUID efi_ip4_service_binding_protocol_guid + = EFI_IP4_SERVICE_BINDING_PROTOCOL_GUID; + /** Load file protocol GUID */ EFI_GUID efi_load_file_protocol_guid = EFI_LOAD_FILE_PROTOCOL_GUID; @@ -99,6 +136,22 @@ EFI_GUID efi_loaded_image_protocol_guid EFI_GUID efi_loaded_image_device_path_protocol_guid = EFI_LOADED_IMAGE_DEVICE_PATH_PROTOCOL_GUID; +/** Managed network protocol GUID */ +EFI_GUID efi_managed_network_protocol_guid + = EFI_MANAGED_NETWORK_PROTOCOL_GUID; + +/** Managed network service binding protocol GUID */ +EFI_GUID efi_managed_network_service_binding_protocol_guid + = EFI_MANAGED_NETWORK_SERVICE_BINDING_PROTOCOL_GUID; + +/** MTFTPv4 protocol GUID */ +EFI_GUID efi_mtftp4_protocol_guid + = EFI_MTFTP4_PROTOCOL_GUID; + +/** MTFTPv4 service binding protocol GUID */ +EFI_GUID efi_mtftp4_service_binding_protocol_guid + = EFI_MTFTP4_SERVICE_BINDING_PROTOCOL_GUID; + /** Network interface identifier protocol GUID (old version) */ EFI_GUID efi_nii_protocol_guid = EFI_NETWORK_INTERFACE_IDENTIFIER_PROTOCOL_GUID; @@ -130,3 +183,23 @@ EFI_GUID efi_simple_network_protocol_guid /** TCG protocol GUID */ EFI_GUID efi_tcg_protocol_guid = EFI_TCG_PROTOCOL_GUID; + +/** TCPv4 protocol GUID */ +EFI_GUID efi_tcp4_protocol_guid + = EFI_TCP4_PROTOCOL_GUID; + +/** TCPv4 service binding protocol GUID */ +EFI_GUID efi_tcp4_service_binding_protocol_guid + = EFI_TCP4_SERVICE_BINDING_PROTOCOL_GUID; + +/** UDPv4 protocol GUID */ +EFI_GUID efi_udp4_protocol_guid + = EFI_UDP4_PROTOCOL_GUID; + +/** UDPv4 service binding protocol GUID */ +EFI_GUID efi_udp4_service_binding_protocol_guid + = EFI_UDP4_SERVICE_BINDING_PROTOCOL_GUID; + +/** VLAN configuration protocol GUID */ +EFI_GUID efi_vlan_config_protocol_guid + = EFI_VLAN_CONFIG_PROTOCOL_GUID;