[crypto] Add block cipher Galois/Counter mode of operation

Signed-off-by: Michael Brown <mcb30@ipxe.org>
pull/785/head
Michael Brown 2022-10-24 18:52:21 +01:00
parent da81214cec
commit 8fce26730c
7 changed files with 1072 additions and 0 deletions

View File

@ -38,6 +38,7 @@ FILE_LICENCE ( GPL2_OR_LATER_OR_UBDL );
#include <ipxe/crypto.h>
#include <ipxe/ecb.h>
#include <ipxe/cbc.h>
#include <ipxe/gcm.h>
#include <ipxe/aes.h>
/** AES strides
@ -798,3 +799,7 @@ ECB_CIPHER ( aes_ecb, aes_ecb_algorithm,
/* AES in Cipher Block Chaining mode */
CBC_CIPHER ( aes_cbc, aes_cbc_algorithm,
aes_algorithm, struct aes_context, AES_BLOCKSIZE );
/* AES in Galois/Counter mode */
GCM_CIPHER ( aes_gcm, aes_gcm_algorithm,
aes_algorithm, struct aes_context, AES_BLOCKSIZE );

531
src/crypto/gcm.c 100644
View File

@ -0,0 +1,531 @@
/*
* Copyright (C) 2022 Michael Brown <mbrown@fensystems.co.uk>.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of the
* License, or any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
* 02110-1301, USA.
*
* You can also choose to distribute this program under the terms of
* the Unmodified Binary Distribution Licence (as given in the file
* COPYING.UBDL), provided that you have satisfied its requirements.
*/
FILE_LICENCE ( GPL2_OR_LATER_OR_UBDL );
/** @file
*
* Galois/Counter Mode (GCM)
*
* The GCM algorithm is specified in
*
* https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38d.pdf
* https://csrc.nist.rip/groups/ST/toolkit/BCM/documents/proposedmodes/gcm/gcm-spec.pdf
*
*/
#include <stdint.h>
#include <string.h>
#include <byteswap.h>
#include <ipxe/crypto.h>
#include <ipxe/gcm.h>
/**
* GCM field polynomial
*
* GCM treats 128-bit blocks as polynomials in GF(2^128) with the
* field polynomial f(x) = 1 + x + x^2 + x^7 + x^128.
*
* In a somewhat bloody-minded interpretation of "big-endian", the
* constant term (with degree zero) is arbitrarily placed in the
* leftmost bit of the big-endian binary representation (i.e. the most
* significant bit of byte 0), thereby failing to correspond to the
* bit ordering in any CPU architecture in existence. This
* necessitates some wholly gratuitous byte reversals when
* constructing the multiplication tables, since all CPUs will treat
* bit 0 as being the least significant bit within a byte.
*
* The field polynomial maps to the 128-bit constant
* 0xe1000000000000000000000000000000 (with the x^128 term outside the
* 128-bit range), and can therefore be treated as a single-byte
* value.
*/
#define GCM_POLY 0xe1
/**
* Hash key for which multiplication tables are cached
*
* GCM operates much more efficiently with a cached multiplication
* table, which costs 4kB per hash key. Since this exceeds the
* available stack space, we place a single 4kB cache in .bss and
* recalculate the cached values as required. In the common case of a
* single HTTPS connection being used to download a (relatively) large
* file, the same key will be used repeatedly for almost all GCM
* operations, and so the overhead of recalculation is negligible.
*/
static const union gcm_block *gcm_cached_key;
/**
* Cached multiplication table (M0) for Shoup's method
*
* Each entry within this table represents the result of multiplying
* the cached hash key by an arbitrary 8-bit polynomial.
*/
static union gcm_block gcm_cached_mult[256];
/**
* Cached reduction table (R) for Shoup's method
*
* Each entry within this table represents the result of multiplying
* the fixed polynomial x^128 by an arbitrary 8-bit polynomial. Only
* the leftmost 16 bits are stored, since all other bits within the
* result will always be zero.
*/
static uint16_t gcm_cached_reduce[256];
/**
* Reverse bits in a byte
*
* @v byte Byte
* @ret etyb Bit-reversed byte
*/
static inline __attribute__ (( always_inline )) uint8_t
gcm_reverse ( const uint8_t byte ) {
uint8_t etyb = etyb;
uint8_t mask;
for ( mask = 1 ; mask ; mask <<= 1 ) {
etyb <<= 1;
if ( byte & mask )
etyb |= 1;
}
return etyb;
}
/**
* Update GCM counter
*
* @v ctr Counter
* @v delta Amount to add to counter
*/
static inline __attribute__ (( always_inline )) void
gcm_count ( union gcm_block *ctr, uint32_t delta ) {
uint32_t *value = &ctr->ctr.value;
/* Update counter modulo 2^32 */
*value = cpu_to_be32 ( be32_to_cpu ( *value ) + delta );
}
/**
* XOR partial data block
*
* @v src1 Source buffer 1
* @v src2 Source buffer 2
* @v dst Destination buffer
* @v len Length
*/
static inline void gcm_xor ( const void *src1, const void *src2, void *dst,
size_t len ) {
uint8_t *dst_bytes = dst;
const uint8_t *src1_bytes = src1;
const uint8_t *src2_bytes = src2;
/* XOR one byte at a time */
while ( len-- )
*(dst_bytes++) = ( *(src1_bytes++) ^ *(src2_bytes++) );
}
/**
* XOR whole data block in situ
*
* @v src Source block
* @v dst Destination block
*/
static inline void gcm_xor_block ( const union gcm_block *src,
union gcm_block *dst ) {
/* XOR whole dwords */
dst->dword[0] ^= src->dword[0];
dst->dword[1] ^= src->dword[1];
dst->dword[2] ^= src->dword[2];
dst->dword[3] ^= src->dword[3];
}
/**
* Multiply polynomial by (x)
*
* @v mult Multiplicand
* @v res Result
*/
static void gcm_multiply_x ( const union gcm_block *mult,
union gcm_block *res ) {
unsigned int i;
uint8_t byte;
uint8_t carry;
/* Multiply by (x) by shifting all bits rightward */
for ( i = 0, carry = 0 ; i < sizeof ( res->byte ) ; i++ ) {
byte = mult->byte[i];
res->byte[i] = ( ( carry << 7 ) | ( byte >> 1 ) );
carry = ( byte & 0x01 );
}
/* If result overflows, reduce modulo the field polynomial */
if ( carry )
res->byte[0] ^= GCM_POLY;
}
/**
* Construct cached tables
*
* @v key Hash key
* @v context Context
*/
static void gcm_cache ( const union gcm_block *key ) {
union gcm_block *mult;
uint16_t reduce;
unsigned int this;
unsigned int other;
unsigned int i;
/* Calculate M0[1..255] and R[1..255]
*
* The R[] values are independent of the key, but the overhead
* of recalculating them here is negligible and saves on
* overall code size since the calculations are related.
*/
for ( i = 1 ; i < 256 ; i++ ) {
/* Reverse bit order to compensate for poor life choices */
this = gcm_reverse ( i );
/* Construct entries */
mult = &gcm_cached_mult[this];
if ( this & 0x80 ) {
/* Odd number: entry[i] = entry[i - 1] + poly */
other = ( this & 0x7f ); /* bit-reversed (i - 1) */
gcm_xor ( key, &gcm_cached_mult[other], mult,
sizeof ( *mult ) );
reduce = gcm_cached_reduce[other];
reduce ^= be16_to_cpu ( GCM_POLY << 8 );
gcm_cached_reduce[this] = reduce;
} else {
/* Even number: entry[i] = entry[i/2] * (x) */
other = ( this << 1 ); /* bit-reversed (i / 2) */
gcm_multiply_x ( &gcm_cached_mult[other], mult );
reduce = be16_to_cpu ( gcm_cached_reduce[other] );
reduce >>= 1;
gcm_cached_reduce[this] = cpu_to_be16 ( reduce );
}
}
/* Record cached key */
gcm_cached_key = key;
}
/**
* Multiply polynomial by (x^8) in situ
*
* @v poly Multiplicand and result
*/
static void gcm_multiply_x_8 ( union gcm_block *poly ) {
uint8_t *byte;
uint8_t msb;
/* Reduction table must already have been calculated */
assert ( gcm_cached_key != NULL );
/* Record most significant byte */
byte = &poly->byte[ sizeof ( poly->byte ) - 1 ];
msb = *byte;
/* Multiply least significant bytes by shifting */
for ( ; byte > &poly->byte[0] ; byte-- )
*byte = *( byte - 1 );
*byte = 0;
/* Multiply most significant byte via reduction table */
poly->word[0] ^= gcm_cached_reduce[msb];
}
/**
* Multiply polynomial by hash key in situ
*
* @v key Hash key
* @v poly Multiplicand and result
*/
static void gcm_multiply_key ( const union gcm_block *key,
union gcm_block *poly ) {
union gcm_block res;
uint8_t *byte;
/* Construct tables, if necessary */
if ( gcm_cached_key != key )
gcm_cache ( key );
/* Multiply using Shoup's algorithm */
byte = &poly->byte[ sizeof ( poly->byte ) - 1 ];
memcpy ( &res, &gcm_cached_mult[ *byte ], sizeof ( res ) );
for ( byte-- ; byte >= &poly->byte[0] ; byte-- ) {
gcm_multiply_x_8 ( &res );
gcm_xor_block ( &gcm_cached_mult[ *byte ], &res );
}
/* Overwrite result */
memcpy ( poly, &res, sizeof ( *poly ) );
}
/**
* Encrypt/decrypt/authenticate data
*
* @v context Context
* @v src Input data, or NULL to process additional data
* @v dst Output data, or NULL to process additional data
* @v hash Hash input data
* @v len Length of data
*/
static void gcm_process ( struct gcm_context *context, const void *src,
void *dst, const void *hash, size_t len ) {
union gcm_block tmp;
uint64_t *total;
size_t frag_len;
unsigned int block;
/* Sanity checks */
assert ( hash != NULL );
assert ( ( ( src == NULL ) && ( dst == NULL ) ) ||
( ( hash == src ) || ( hash == dst ) ) );
/* Calculate block number (for debugging) */
block = ( ( ( context->len.len.add + 8 * sizeof ( tmp ) - 1 ) /
( 8 * sizeof ( tmp ) ) ) +
( ( context->len.len.data + 8 * sizeof ( tmp ) - 1 ) /
( 8 * sizeof ( tmp ) ) ) + 1 );
/* Update total length (in bits) */
total = ( src ? &context->len.len.data : &context->len.len.add );
*total += ( len * 8 );
/* Process data */
for ( ; len ; hash += frag_len, len -= frag_len, block++ ) {
/* Calculate fragment length */
frag_len = len;
if ( frag_len > sizeof ( tmp ) )
frag_len = sizeof ( tmp );
/* Encrypt/decrypt block, if applicable */
if ( dst ) {
/* Increment counter */
gcm_count ( &context->ctr, 1 );
/* Encrypt counter */
DBGC2 ( context, "GCM %p Y[%d]:\n", context, block );
DBGC2_HDA ( context, 0, &context->ctr,
sizeof ( context->ctr ) );
cipher_encrypt ( context->raw_cipher, &context->raw_ctx,
&context->ctr, &tmp, sizeof ( tmp ) );
DBGC2 ( context, "GCM %p E(K,Y[%d]):\n",
context, block );
DBGC2_HDA ( context, 0, &tmp, sizeof ( tmp ) );
/* Encrypt/decrypt data */
gcm_xor ( src, &tmp, dst, frag_len );
src += frag_len;
dst += frag_len;
}
/* Update hash */
gcm_xor ( hash, &context->hash, &context->hash, frag_len );
gcm_multiply_key ( &context->key, &context->hash );
DBGC2 ( context, "GCM %p X[%d]:\n", context, block );
DBGC2_HDA ( context, 0, &context->hash,
sizeof ( context->hash ) );
}
}
/**
* Construct hash
*
* @v context Context
* @v hash Hash to fill in
*/
static void gcm_hash ( struct gcm_context *context, union gcm_block *hash ) {
/* Construct big-endian lengths block */
hash->len.add = cpu_to_be64 ( context->len.len.add );
hash->len.data = cpu_to_be64 ( context->len.len.data );
DBGC2 ( context, "GCM %p len(A)||len(C):\n", context );
DBGC2_HDA ( context, 0, hash, sizeof ( *hash ) );
/* Update hash */
gcm_xor_block ( &context->hash, hash );
gcm_multiply_key ( &context->key, hash );
DBGC2 ( context, "GCM %p GHASH(H,A,C):\n", context );
DBGC2_HDA ( context, 0, hash, sizeof ( *hash ) );
}
/**
* Construct tag
*
* @v context Context
* @v tag Tag
*/
void gcm_tag ( struct gcm_context *context, union gcm_block *tag ) {
union gcm_block tmp;
uint32_t offset;
/* Construct hash */
gcm_hash ( context, tag );
/* Construct encrypted initial counter value */
memcpy ( &tmp, &context->ctr, sizeof ( tmp ) );
offset = ( ( -context->len.len.data ) / ( 8 * sizeof ( tmp ) ) );
gcm_count ( &tmp, offset );
cipher_encrypt ( context->raw_cipher, &context->raw_ctx, &tmp,
&tmp, sizeof ( tmp ) );
DBGC2 ( context, "GCM %p E(K,Y[0]):\n", context );
DBGC2_HDA ( context, 0, &tmp, sizeof ( tmp ) );
/* Construct tag */
gcm_xor_block ( &tmp, tag );
DBGC2 ( context, "GCM %p T:\n", context );
DBGC2_HDA ( context, 0, tag, sizeof ( *tag ) );
}
/**
* Set key
*
* @v context Context
* @v key Key
* @v keylen Key length
* @v raw_cipher Underlying cipher
* @ret rc Return status code
*/
int gcm_setkey ( struct gcm_context *context, const void *key, size_t keylen,
struct cipher_algorithm *raw_cipher ) {
int rc;
/* Initialise GCM context */
memset ( context, 0, sizeof ( *context ) );
context->raw_cipher = raw_cipher;
/* Set underlying block cipher key */
if ( ( rc = cipher_setkey ( raw_cipher, context->raw_ctx, key,
keylen ) ) != 0 )
return rc;
/* Construct GCM hash key */
cipher_encrypt ( raw_cipher, context->raw_ctx, &context->ctr,
&context->key, sizeof ( context->key ) );
DBGC2 ( context, "GCM %p H:\n", context );
DBGC2_HDA ( context, 0, &context->key, sizeof ( context->key ) );
/* Reset counter */
context->ctr.ctr.value = cpu_to_be32 ( 1 );
/* Construct cached tables */
gcm_cache ( &context->key );
return 0;
}
/**
* Set initialisation vector
*
* @v ctx Context
* @v iv Initialisation vector
* @v ivlen Initialisation vector length
*/
void gcm_setiv ( struct gcm_context *context, const void *iv, size_t ivlen ) {
/* Reset counter */
memset ( context->ctr.ctr.iv, 0, sizeof ( context->ctr.ctr.iv ) );
context->ctr.ctr.value = cpu_to_be32 ( 1 );
/* Process initialisation vector */
if ( ivlen == sizeof ( context->ctr.ctr.iv ) ) {
/* Initialisation vector is exactly 96 bits, use it as-is */
memcpy ( context->ctr.ctr.iv, iv, ivlen );
} else {
/* Calculate hash over initialisation vector */
gcm_process ( context, iv, NULL, iv, ivlen );
gcm_hash ( context, &context->ctr );
/* Reset accumulated hash */
memset ( &context->hash, 0, sizeof ( context->hash ) );
/* Reset data lengths */
assert ( context->len.len.add == 0 );
context->len.len.data = 0;
}
DBGC2 ( context, "GCM %p Y[0]:\n", context );
DBGC2_HDA ( context, 0, &context->ctr, sizeof ( context->ctr ) );
}
/**
* Encrypt data
*
* @v context Context
* @v src Data to encrypt
* @v dst Buffer for encrypted data, or NULL for additional data
* @v len Length of data
*/
void gcm_encrypt ( struct gcm_context *context, const void *src, void *dst,
size_t len ) {
const void *hash;
/* Determine hash input */
if ( dst ) {
/* Encrypting: hash the encrypted data */
hash = dst;
} else {
/* Authenticating: hash the input data */
hash = src;
src = NULL;
}
/* Process data */
gcm_process ( context, src, dst, hash, len );
}
/**
* Decrypt data
*
* @v context Context
* @v src Data to decrypt
* @v dst Buffer for decrypted data, or NULL for additional data
* @v len Length of data
*/
void gcm_decrypt ( struct gcm_context *context, const void *src, void *dst,
size_t len ) {
const void *hash;
/* Determine hash input */
hash = src;
if ( ! dst ) {
/* Authenticating: only hash */
src = NULL;
}
/* Process data */
gcm_process ( context, src, dst, hash, len );
}

View File

@ -47,6 +47,7 @@ struct aes_context {
extern struct cipher_algorithm aes_algorithm;
extern struct cipher_algorithm aes_ecb_algorithm;
extern struct cipher_algorithm aes_cbc_algorithm;
extern struct cipher_algorithm aes_gcm_algorithm;
int aes_wrap ( const void *kek, const void *src, void *dest, int nblk );
int aes_unwrap ( const void *kek, const void *src, void *dest, int nblk );

View File

@ -11,6 +11,7 @@ FILE_LICENCE ( GPL2_OR_LATER_OR_UBDL );
#include <stdint.h>
#include <stddef.h>
#include <assert.h>
/** A message digest algorithm */
struct digest_algorithm {

View File

@ -0,0 +1,132 @@
#ifndef _IPXE_GCM_H
#define _IPXE_GCM_H
/** @file
*
* Galois/Counter Mode (GCM)
*
*/
FILE_LICENCE ( GPL2_OR_LATER_OR_UBDL );
#include <stdint.h>
#include <ipxe/crypto.h>
/** A GCM counter */
struct gcm_counter {
/** Initialisation vector */
uint8_t iv[12];
/** Counter value */
uint32_t value;
} __attribute__ (( packed ));
/** A GCM length pair */
struct gcm_lengths {
/** Additional data length */
uint64_t add;
/** Data length */
uint64_t data;
} __attribute__ (( packed ));
/** A GCM block */
union gcm_block {
/** Raw bytes */
uint8_t byte[16];
/** Raw words */
uint16_t word[8];
/** Raw dwords */
uint32_t dword[4];
/** Counter */
struct gcm_counter ctr;
/** Lengths */
struct gcm_lengths len;
} __attribute__ (( packed ));
/** GCM context */
struct gcm_context {
/** Hash key (H) */
union gcm_block key;
/** Counter (Y) */
union gcm_block ctr;
/** Accumulated hash (X) */
union gcm_block hash;
/** Accumulated lengths */
union gcm_block len;
/** Underlying block cipher */
struct cipher_algorithm *raw_cipher;
/** Underlying block cipher context */
uint8_t raw_ctx[0];
};
extern void gcm_tag ( struct gcm_context *context, union gcm_block *tag );
extern int gcm_setkey ( struct gcm_context *context, const void *key,
size_t keylen, struct cipher_algorithm *raw_cipher );
extern void gcm_setiv ( struct gcm_context *context, const void *iv,
size_t ivlen );
extern void gcm_encrypt ( struct gcm_context *context, const void *src,
void *dst, size_t len );
extern void gcm_decrypt ( struct gcm_context *context, const void *src,
void *dst, size_t len );
/**
* Create a GCM mode of behaviour of an existing cipher
*
* @v _cbc_name Name for the new CBC cipher
* @v _cbc_cipher New cipher algorithm
* @v _raw_cipher Underlying cipher algorithm
* @v _raw_context Context structure for the underlying cipher
* @v _blocksize Cipher block size
*/
#define GCM_CIPHER( _gcm_name, _gcm_cipher, _raw_cipher, _raw_context, \
_blocksize ) \
struct _gcm_name ## _context { \
/** GCM context */ \
struct gcm_context gcm; \
/** Underlying block cipher context */ \
_raw_context raw; \
}; \
static int _gcm_name ## _setkey ( void *ctx, const void *key, \
size_t keylen ) { \
struct _gcm_name ## _context *context = ctx; \
linker_assert ( _blocksize == sizeof ( context->gcm.key ), \
_gcm_name ## _unsupported_blocksize ); \
linker_assert ( ( ( void * ) &context->gcm ) == ctx, \
_gcm_name ## _context_layout_error ); \
linker_assert ( ( ( void * ) &context->raw ) == \
( ( void * ) context->gcm.raw_ctx ), \
_gcm_name ## _context_layout_error ); \
return gcm_setkey ( &context->gcm, key, keylen, &_raw_cipher ); \
} \
static void _gcm_name ## _setiv ( void *ctx, const void *iv, \
size_t ivlen ) { \
struct _gcm_name ## _context *context = ctx; \
gcm_setiv ( &context->gcm, iv, ivlen ); \
} \
static void _gcm_name ## _encrypt ( void *ctx, const void *src, \
void *dst, size_t len ) { \
struct _gcm_name ## _context *context = ctx; \
gcm_encrypt ( &context->gcm, src, dst, len ); \
} \
static void _gcm_name ## _decrypt ( void *ctx, const void *src, \
void *dst, size_t len ) { \
struct _gcm_name ## _context *context = ctx; \
gcm_decrypt ( &context->gcm, src, dst, len ); \
} \
static void _gcm_name ## _auth ( void *ctx, void *auth ) { \
struct _gcm_name ## _context *context = ctx; \
union gcm_block *tag = auth; \
gcm_tag ( &context->gcm, tag ); \
} \
struct cipher_algorithm _gcm_cipher = { \
.name = #_gcm_name, \
.ctxsize = sizeof ( struct _gcm_name ## _context ), \
.blocksize = 1, \
.authsize = sizeof ( union gcm_block ), \
.setkey = _gcm_name ## _setkey, \
.setiv = _gcm_name ## _setiv, \
.encrypt = _gcm_name ## _encrypt, \
.decrypt = _gcm_name ## _decrypt, \
.auth = _gcm_name ## _auth, \
};
#endif /* _IPXE_GCM_H */

View File

@ -0,0 +1,401 @@
/*
* Copyright (C) 2022 Michael Brown <mbrown@fensystems.co.uk>.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of the
* License, or any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
* 02110-1301, USA.
*
* You can also choose to distribute this program under the terms of
* the Unmodified Binary Distribution Licence (as given in the file
* COPYING.UBDL), provided that you have satisfied its requirements.
*/
FILE_LICENCE ( GPL2_OR_LATER_OR_UBDL );
/** @file
*
* Galois/Counter Mode (GCM) tests
*
* These test vectors are provided by NIST as part of the GCM proposed
* specification document (which, unlike the final published
* specification document, includes test vectors with intermediate
* values):
*
* https://csrc.nist.rip/groups/ST/toolkit/BCM/documents/proposedmodes/gcm/gcm-spec.pdf
*
*/
/* Forcibly enable assertions */
#undef NDEBUG
#include <string.h>
#include <ipxe/gcm.h>
#include <ipxe/aes.h>
#include <ipxe/test.h>
#include "cipher_test.h"
/** 128-bit zero key */
#define GCM_KEY_128_ZERO \
KEY ( 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, \
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 )
/** 128-bit key */
#define GCM_KEY_128 \
KEY ( 0xfe, 0xff, 0xe9, 0x92, 0x86, 0x65, 0x73, 0x1c, 0x6d, \
0x6a, 0x8f, 0x94, 0x67, 0x30, 0x83, 0x08 )
/** 192-bit zero key */
#define GCM_KEY_192_ZERO \
KEY ( 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, \
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, \
0x00, 0x00, 0x00, 0x00, 0x00, 0x00 )
/** 192-bit key */
#define GCM_KEY_192 \
KEY ( 0xfe, 0xff, 0xe9, 0x92, 0x86, 0x65, 0x73, 0x1c, 0x6d, \
0x6a, 0x8f, 0x94, 0x67, 0x30, 0x83, 0x08, 0xfe, 0xff, \
0xe9, 0x92, 0x86, 0x65, 0x73, 0x1c )
/** 256-bit zero key */
#define GCM_KEY_256_ZERO \
KEY ( 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, \
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, \
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, \
0x00, 0x00, 0x00, 0x00, 0x00 )
/** 256-bit key */
#define GCM_KEY_256 \
KEY ( 0xfe, 0xff, 0xe9, 0x92, 0x86, 0x65, 0x73, 0x1c, 0x6d, \
0x6a, 0x8f, 0x94, 0x67, 0x30, 0x83, 0x08, 0xfe, 0xff, \
0xe9, 0x92, 0x86, 0x65, 0x73, 0x1c, 0x6d, 0x6a, 0x8f, \
0x94, 0x67, 0x30, 0x83, 0x08 )
/** 64-bit IV */
#define GCM_IV_64 \
IV ( 0xca, 0xfe, 0xba, 0xbe, 0xfa, 0xce, 0xdb, 0xad )
/** 96-bit zero IV */
#define GCM_IV_96_ZERO \
IV ( 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, \
0x00, 0x00, 0x00 )
/** 96-bit IV */
#define GCM_IV_96 \
IV ( 0xca, 0xfe, 0xba, 0xbe, 0xfa, 0xce, 0xdb, 0xad, 0xde, \
0xca, 0xf8, 0x88 )
/** 480-bit IV */
#define GCM_IV_480 \
IV ( 0x93, 0x13, 0x22, 0x5d, 0xf8, 0x84, 0x06, 0xe5, 0x55, \
0x90, 0x9c, 0x5a, 0xff, 0x52, 0x69, 0xaa, 0x6a, 0x7a, \
0x95, 0x38, 0x53, 0x4f, 0x7d, 0xa1, 0xe4, 0xc3, 0x03, \
0xd2, 0xa3, 0x18, 0xa7, 0x28, 0xc3, 0xc0, 0xc9, 0x51, \
0x56, 0x80, 0x95, 0x39, 0xfc, 0xf0, 0xe2, 0x42, 0x9a, \
0x6b, 0x52, 0x54, 0x16, 0xae, 0xdb, 0xf5, 0xa0, 0xde, \
0x6a, 0x57, 0xa6, 0x37, 0xb3, 0x9b )
/** Empty additional data */
#define GCM_ADDITIONAL_EMPTY ADDITIONAL()
/** 160-bit additional data */
#define GCM_ADDITIONAL_160 \
ADDITIONAL ( 0xfe, 0xed, 0xfa, 0xce, 0xde, 0xad, 0xbe, 0xef, \
0xfe, 0xed, 0xfa, 0xce, 0xde, 0xad, 0xbe, 0xef, \
0xab, 0xad, 0xda, 0xd2 )
/** Empty plaintext */
#define GCM_PLAINTEXT_EMPTY PLAINTEXT()
/** 128-bit zero plaintext */
#define GCM_PLAINTEXT_128_ZERO \
PLAINTEXT ( 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, \
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 )
/** 512-bit plaintext */
#define GCM_PLAINTEXT_512 \
PLAINTEXT ( 0xd9, 0x31, 0x32, 0x25, 0xf8, 0x84, 0x06, 0xe5, \
0xa5, 0x59, 0x09, 0xc5, 0xaf, 0xf5, 0x26, 0x9a, \
0x86, 0xa7, 0xa9, 0x53, 0x15, 0x34, 0xf7, 0xda, \
0x2e, 0x4c, 0x30, 0x3d, 0x8a, 0x31, 0x8a, 0x72, \
0x1c, 0x3c, 0x0c, 0x95, 0x95, 0x68, 0x09, 0x53, \
0x2f, 0xcf, 0x0e, 0x24, 0x49, 0xa6, 0xb5, 0x25, \
0xb1, 0x6a, 0xed, 0xf5, 0xaa, 0x0d, 0xe6, 0x57, \
0xba, 0x63, 0x7b, 0x39, 0x1a, 0xaf, 0xd2, 0x55 )
/** 480-bit plaintext */
#define GCM_PLAINTEXT_480 \
PLAINTEXT ( 0xd9, 0x31, 0x32, 0x25, 0xf8, 0x84, 0x06, 0xe5, \
0xa5, 0x59, 0x09, 0xc5, 0xaf, 0xf5, 0x26, 0x9a, \
0x86, 0xa7, 0xa9, 0x53, 0x15, 0x34, 0xf7, 0xda, \
0x2e, 0x4c, 0x30, 0x3d, 0x8a, 0x31, 0x8a, 0x72, \
0x1c, 0x3c, 0x0c, 0x95, 0x95, 0x68, 0x09, 0x53, \
0x2f, 0xcf, 0x0e, 0x24, 0x49, 0xa6, 0xb5, 0x25, \
0xb1, 0x6a, 0xed, 0xf5, 0xaa, 0x0d, 0xe6, 0x57, \
0xba, 0x63, 0x7b, 0x39 )
/** Test 1 */
CIPHER_TEST ( gcm_test_1, &aes_gcm_algorithm, GCM_KEY_128_ZERO,
GCM_IV_96_ZERO, GCM_ADDITIONAL_EMPTY, GCM_PLAINTEXT_EMPTY,
CIPHERTEXT(),
AUTH ( 0x58, 0xe2, 0xfc, 0xce, 0xfa, 0x7e, 0x30, 0x61, 0x36,
0x7f, 0x1d, 0x57, 0xa4, 0xe7, 0x45, 0x5a ) );
/** Test 2 */
CIPHER_TEST ( gcm_test_2, &aes_gcm_algorithm, GCM_KEY_128_ZERO,
GCM_IV_96_ZERO, GCM_ADDITIONAL_EMPTY, GCM_PLAINTEXT_128_ZERO,
CIPHERTEXT ( 0x03, 0x88, 0xda, 0xce, 0x60, 0xb6, 0xa3, 0x92,
0xf3, 0x28, 0xc2, 0xb9, 0x71, 0xb2, 0xfe, 0x78 ),
AUTH ( 0xab, 0x6e, 0x47, 0xd4, 0x2c, 0xec, 0x13, 0xbd, 0xf5,
0x3a, 0x67, 0xb2, 0x12, 0x57, 0xbd, 0xdf ) );
/** Test 3 */
CIPHER_TEST ( gcm_test_3, &aes_gcm_algorithm, GCM_KEY_128,
GCM_IV_96, GCM_ADDITIONAL_EMPTY, GCM_PLAINTEXT_512,
CIPHERTEXT ( 0x42, 0x83, 0x1e, 0xc2, 0x21, 0x77, 0x74, 0x24,
0x4b, 0x72, 0x21, 0xb7, 0x84, 0xd0, 0xd4, 0x9c,
0xe3, 0xaa, 0x21, 0x2f, 0x2c, 0x02, 0xa4, 0xe0,
0x35, 0xc1, 0x7e, 0x23, 0x29, 0xac, 0xa1, 0x2e,
0x21, 0xd5, 0x14, 0xb2, 0x54, 0x66, 0x93, 0x1c,
0x7d, 0x8f, 0x6a, 0x5a, 0xac, 0x84, 0xaa, 0x05,
0x1b, 0xa3, 0x0b, 0x39, 0x6a, 0x0a, 0xac, 0x97,
0x3d, 0x58, 0xe0, 0x91, 0x47, 0x3f, 0x59, 0x85 ),
AUTH ( 0x4d, 0x5c, 0x2a, 0xf3, 0x27, 0xcd, 0x64, 0xa6, 0x2c,
0xf3, 0x5a, 0xbd, 0x2b, 0xa6, 0xfa, 0xb4 ) );
/** Test 4 */
CIPHER_TEST ( gcm_test_4, &aes_gcm_algorithm, GCM_KEY_128,
GCM_IV_96, GCM_ADDITIONAL_160, GCM_PLAINTEXT_480,
CIPHERTEXT ( 0x42, 0x83, 0x1e, 0xc2, 0x21, 0x77, 0x74, 0x24,
0x4b, 0x72, 0x21, 0xb7, 0x84, 0xd0, 0xd4, 0x9c,
0xe3, 0xaa, 0x21, 0x2f, 0x2c, 0x02, 0xa4, 0xe0,
0x35, 0xc1, 0x7e, 0x23, 0x29, 0xac, 0xa1, 0x2e,
0x21, 0xd5, 0x14, 0xb2, 0x54, 0x66, 0x93, 0x1c,
0x7d, 0x8f, 0x6a, 0x5a, 0xac, 0x84, 0xaa, 0x05,
0x1b, 0xa3, 0x0b, 0x39, 0x6a, 0x0a, 0xac, 0x97,
0x3d, 0x58, 0xe0, 0x91 ),
AUTH ( 0x5b, 0xc9, 0x4f, 0xbc, 0x32, 0x21, 0xa5, 0xdb, 0x94,
0xfa, 0xe9, 0x5a, 0xe7, 0x12, 0x1a, 0x47 ) );
/** Test 5 */
CIPHER_TEST ( gcm_test_5, &aes_gcm_algorithm, GCM_KEY_128,
GCM_IV_64, GCM_ADDITIONAL_160, GCM_PLAINTEXT_480,
CIPHERTEXT ( 0x61, 0x35, 0x3b, 0x4c, 0x28, 0x06, 0x93, 0x4a,
0x77, 0x7f, 0xf5, 0x1f, 0xa2, 0x2a, 0x47, 0x55,
0x69, 0x9b, 0x2a, 0x71, 0x4f, 0xcd, 0xc6, 0xf8,
0x37, 0x66, 0xe5, 0xf9, 0x7b, 0x6c, 0x74, 0x23,
0x73, 0x80, 0x69, 0x00, 0xe4, 0x9f, 0x24, 0xb2,
0x2b, 0x09, 0x75, 0x44, 0xd4, 0x89, 0x6b, 0x42,
0x49, 0x89, 0xb5, 0xe1, 0xeb, 0xac, 0x0f, 0x07,
0xc2, 0x3f, 0x45, 0x98 ),
AUTH ( 0x36, 0x12, 0xd2, 0xe7, 0x9e, 0x3b, 0x07, 0x85, 0x56,
0x1b, 0xe1, 0x4a, 0xac, 0xa2, 0xfc, 0xcb ) );
/** Test 6 */
CIPHER_TEST ( gcm_test_6, &aes_gcm_algorithm, GCM_KEY_128,
GCM_IV_480, GCM_ADDITIONAL_160, GCM_PLAINTEXT_480,
CIPHERTEXT ( 0x8c, 0xe2, 0x49, 0x98, 0x62, 0x56, 0x15, 0xb6,
0x03, 0xa0, 0x33, 0xac, 0xa1, 0x3f, 0xb8, 0x94,
0xbe, 0x91, 0x12, 0xa5, 0xc3, 0xa2, 0x11, 0xa8,
0xba, 0x26, 0x2a, 0x3c, 0xca, 0x7e, 0x2c, 0xa7,
0x01, 0xe4, 0xa9, 0xa4, 0xfb, 0xa4, 0x3c, 0x90,
0xcc, 0xdc, 0xb2, 0x81, 0xd4, 0x8c, 0x7c, 0x6f,
0xd6, 0x28, 0x75, 0xd2, 0xac, 0xa4, 0x17, 0x03,
0x4c, 0x34, 0xae, 0xe5 ),
AUTH ( 0x61, 0x9c, 0xc5, 0xae, 0xff, 0xfe, 0x0b, 0xfa, 0x46,
0x2a, 0xf4, 0x3c, 0x16, 0x99, 0xd0, 0x50 ) );
/** Test 7 */
CIPHER_TEST ( gcm_test_7, &aes_gcm_algorithm, GCM_KEY_192_ZERO,
GCM_IV_96_ZERO, GCM_ADDITIONAL_EMPTY, GCM_PLAINTEXT_EMPTY,
CIPHERTEXT(),
AUTH ( 0xcd, 0x33, 0xb2, 0x8a, 0xc7, 0x73, 0xf7, 0x4b, 0xa0,
0x0e, 0xd1, 0xf3, 0x12, 0x57, 0x24, 0x35 ) );
/** Test 8 */
CIPHER_TEST ( gcm_test_8, &aes_gcm_algorithm, GCM_KEY_192_ZERO,
GCM_IV_96_ZERO, GCM_ADDITIONAL_EMPTY, GCM_PLAINTEXT_128_ZERO,
CIPHERTEXT ( 0x98, 0xe7, 0x24, 0x7c, 0x07, 0xf0, 0xfe, 0x41,
0x1c, 0x26, 0x7e, 0x43, 0x84, 0xb0, 0xf6, 0x00 ),
AUTH ( 0x2f, 0xf5, 0x8d, 0x80, 0x03, 0x39, 0x27, 0xab, 0x8e,
0xf4, 0xd4, 0x58, 0x75, 0x14, 0xf0, 0xfb ) );
/** Test 9 */
CIPHER_TEST ( gcm_test_9, &aes_gcm_algorithm, GCM_KEY_192,
GCM_IV_96, GCM_ADDITIONAL_EMPTY, GCM_PLAINTEXT_512,
CIPHERTEXT ( 0x39, 0x80, 0xca, 0x0b, 0x3c, 0x00, 0xe8, 0x41,
0xeb, 0x06, 0xfa, 0xc4, 0x87, 0x2a, 0x27, 0x57,
0x85, 0x9e, 0x1c, 0xea, 0xa6, 0xef, 0xd9, 0x84,
0x62, 0x85, 0x93, 0xb4, 0x0c, 0xa1, 0xe1, 0x9c,
0x7d, 0x77, 0x3d, 0x00, 0xc1, 0x44, 0xc5, 0x25,
0xac, 0x61, 0x9d, 0x18, 0xc8, 0x4a, 0x3f, 0x47,
0x18, 0xe2, 0x44, 0x8b, 0x2f, 0xe3, 0x24, 0xd9,
0xcc, 0xda, 0x27, 0x10, 0xac, 0xad, 0xe2, 0x56 ),
AUTH ( 0x99, 0x24, 0xa7, 0xc8, 0x58, 0x73, 0x36, 0xbf, 0xb1,
0x18, 0x02, 0x4d, 0xb8, 0x67, 0x4a, 0x14 ) );
/** Test 10 */
CIPHER_TEST ( gcm_test_10, &aes_gcm_algorithm, GCM_KEY_192,
GCM_IV_96, GCM_ADDITIONAL_160, GCM_PLAINTEXT_480,
CIPHERTEXT ( 0x39, 0x80, 0xca, 0x0b, 0x3c, 0x00, 0xe8, 0x41,
0xeb, 0x06, 0xfa, 0xc4, 0x87, 0x2a, 0x27, 0x57,
0x85, 0x9e, 0x1c, 0xea, 0xa6, 0xef, 0xd9, 0x84,
0x62, 0x85, 0x93, 0xb4, 0x0c, 0xa1, 0xe1, 0x9c,
0x7d, 0x77, 0x3d, 0x00, 0xc1, 0x44, 0xc5, 0x25,
0xac, 0x61, 0x9d, 0x18, 0xc8, 0x4a, 0x3f, 0x47,
0x18, 0xe2, 0x44, 0x8b, 0x2f, 0xe3, 0x24, 0xd9,
0xcc, 0xda, 0x27, 0x10 ),
AUTH ( 0x25, 0x19, 0x49, 0x8e, 0x80, 0xf1, 0x47, 0x8f, 0x37,
0xba, 0x55, 0xbd, 0x6d, 0x27, 0x61, 0x8c ) );
/** Test 11 */
CIPHER_TEST ( gcm_test_11, &aes_gcm_algorithm, GCM_KEY_192,
GCM_IV_64, GCM_ADDITIONAL_160, GCM_PLAINTEXT_480,
CIPHERTEXT ( 0x0f, 0x10, 0xf5, 0x99, 0xae, 0x14, 0xa1, 0x54,
0xed, 0x24, 0xb3, 0x6e, 0x25, 0x32, 0x4d, 0xb8,
0xc5, 0x66, 0x63, 0x2e, 0xf2, 0xbb, 0xb3, 0x4f,
0x83, 0x47, 0x28, 0x0f, 0xc4, 0x50, 0x70, 0x57,
0xfd, 0xdc, 0x29, 0xdf, 0x9a, 0x47, 0x1f, 0x75,
0xc6, 0x65, 0x41, 0xd4, 0xd4, 0xda, 0xd1, 0xc9,
0xe9, 0x3a, 0x19, 0xa5, 0x8e, 0x8b, 0x47, 0x3f,
0xa0, 0xf0, 0x62, 0xf7 ),
AUTH ( 0x65, 0xdc, 0xc5, 0x7f, 0xcf, 0x62, 0x3a, 0x24, 0x09,
0x4f, 0xcc, 0xa4, 0x0d, 0x35, 0x33, 0xf8 ) );
/** Test 12 */
CIPHER_TEST ( gcm_test_12, &aes_gcm_algorithm, GCM_KEY_192,
GCM_IV_480, GCM_ADDITIONAL_160, GCM_PLAINTEXT_480,
CIPHERTEXT ( 0xd2, 0x7e, 0x88, 0x68, 0x1c, 0xe3, 0x24, 0x3c,
0x48, 0x30, 0x16, 0x5a, 0x8f, 0xdc, 0xf9, 0xff,
0x1d, 0xe9, 0xa1, 0xd8, 0xe6, 0xb4, 0x47, 0xef,
0x6e, 0xf7, 0xb7, 0x98, 0x28, 0x66, 0x6e, 0x45,
0x81, 0xe7, 0x90, 0x12, 0xaf, 0x34, 0xdd, 0xd9,
0xe2, 0xf0, 0x37, 0x58, 0x9b, 0x29, 0x2d, 0xb3,
0xe6, 0x7c, 0x03, 0x67, 0x45, 0xfa, 0x22, 0xe7,
0xe9, 0xb7, 0x37, 0x3b ),
AUTH ( 0xdc, 0xf5, 0x66, 0xff, 0x29, 0x1c, 0x25, 0xbb, 0xb8,
0x56, 0x8f, 0xc3, 0xd3, 0x76, 0xa6, 0xd9 ) );
/** Test 13 */
CIPHER_TEST ( gcm_test_13, &aes_gcm_algorithm, GCM_KEY_256_ZERO,
GCM_IV_96_ZERO, GCM_ADDITIONAL_EMPTY, GCM_PLAINTEXT_EMPTY,
CIPHERTEXT(),
AUTH ( 0x53, 0x0f, 0x8a, 0xfb, 0xc7, 0x45, 0x36, 0xb9, 0xa9,
0x63, 0xb4, 0xf1, 0xc4, 0xcb, 0x73, 0x8b ) );
/** Test 14 */
CIPHER_TEST ( gcm_test_14, &aes_gcm_algorithm, GCM_KEY_256_ZERO,
GCM_IV_96_ZERO, GCM_ADDITIONAL_EMPTY, GCM_PLAINTEXT_128_ZERO,
CIPHERTEXT ( 0xce, 0xa7, 0x40, 0x3d, 0x4d, 0x60, 0x6b, 0x6e,
0x07, 0x4e, 0xc5, 0xd3, 0xba, 0xf3, 0x9d, 0x18 ),
AUTH ( 0xd0, 0xd1, 0xc8, 0xa7, 0x99, 0x99, 0x6b, 0xf0, 0x26,
0x5b, 0x98, 0xb5, 0xd4, 0x8a, 0xb9, 0x19 ) );
/** Test 15 */
CIPHER_TEST ( gcm_test_15, &aes_gcm_algorithm, GCM_KEY_256,
GCM_IV_96, GCM_ADDITIONAL_EMPTY, GCM_PLAINTEXT_512,
CIPHERTEXT ( 0x52, 0x2d, 0xc1, 0xf0, 0x99, 0x56, 0x7d, 0x07,
0xf4, 0x7f, 0x37, 0xa3, 0x2a, 0x84, 0x42, 0x7d,
0x64, 0x3a, 0x8c, 0xdc, 0xbf, 0xe5, 0xc0, 0xc9,
0x75, 0x98, 0xa2, 0xbd, 0x25, 0x55, 0xd1, 0xaa,
0x8c, 0xb0, 0x8e, 0x48, 0x59, 0x0d, 0xbb, 0x3d,
0xa7, 0xb0, 0x8b, 0x10, 0x56, 0x82, 0x88, 0x38,
0xc5, 0xf6, 0x1e, 0x63, 0x93, 0xba, 0x7a, 0x0a,
0xbc, 0xc9, 0xf6, 0x62, 0x89, 0x80, 0x15, 0xad ),
AUTH ( 0xb0, 0x94, 0xda, 0xc5, 0xd9, 0x34, 0x71, 0xbd, 0xec,
0x1a, 0x50, 0x22, 0x70, 0xe3, 0xcc, 0x6c ) );
/** Test 16 */
CIPHER_TEST ( gcm_test_16, &aes_gcm_algorithm, GCM_KEY_256,
GCM_IV_96, GCM_ADDITIONAL_160, GCM_PLAINTEXT_480,
CIPHERTEXT ( 0x52, 0x2d, 0xc1, 0xf0, 0x99, 0x56, 0x7d, 0x07,
0xf4, 0x7f, 0x37, 0xa3, 0x2a, 0x84, 0x42, 0x7d,
0x64, 0x3a, 0x8c, 0xdc, 0xbf, 0xe5, 0xc0, 0xc9,
0x75, 0x98, 0xa2, 0xbd, 0x25, 0x55, 0xd1, 0xaa,
0x8c, 0xb0, 0x8e, 0x48, 0x59, 0x0d, 0xbb, 0x3d,
0xa7, 0xb0, 0x8b, 0x10, 0x56, 0x82, 0x88, 0x38,
0xc5, 0xf6, 0x1e, 0x63, 0x93, 0xba, 0x7a, 0x0a,
0xbc, 0xc9, 0xf6, 0x62 ),
AUTH ( 0x76, 0xfc, 0x6e, 0xce, 0x0f, 0x4e, 0x17, 0x68, 0xcd,
0xdf, 0x88, 0x53, 0xbb, 0x2d, 0x55, 0x1b ) );
/** Test 17 */
CIPHER_TEST ( gcm_test_17, &aes_gcm_algorithm, GCM_KEY_256,
GCM_IV_64, GCM_ADDITIONAL_160, GCM_PLAINTEXT_480,
CIPHERTEXT ( 0xc3, 0x76, 0x2d, 0xf1, 0xca, 0x78, 0x7d, 0x32,
0xae, 0x47, 0xc1, 0x3b, 0xf1, 0x98, 0x44, 0xcb,
0xaf, 0x1a, 0xe1, 0x4d, 0x0b, 0x97, 0x6a, 0xfa,
0xc5, 0x2f, 0xf7, 0xd7, 0x9b, 0xba, 0x9d, 0xe0,
0xfe, 0xb5, 0x82, 0xd3, 0x39, 0x34, 0xa4, 0xf0,
0x95, 0x4c, 0xc2, 0x36, 0x3b, 0xc7, 0x3f, 0x78,
0x62, 0xac, 0x43, 0x0e, 0x64, 0xab, 0xe4, 0x99,
0xf4, 0x7c, 0x9b, 0x1f ),
AUTH ( 0x3a, 0x33, 0x7d, 0xbf, 0x46, 0xa7, 0x92, 0xc4, 0x5e,
0x45, 0x49, 0x13, 0xfe, 0x2e, 0xa8, 0xf2 ) );
/** Test 18 */
CIPHER_TEST ( gcm_test_18, &aes_gcm_algorithm, GCM_KEY_256,
GCM_IV_480, GCM_ADDITIONAL_160, GCM_PLAINTEXT_480,
CIPHERTEXT ( 0x5a, 0x8d, 0xef, 0x2f, 0x0c, 0x9e, 0x53, 0xf1,
0xf7, 0x5d, 0x78, 0x53, 0x65, 0x9e, 0x2a, 0x20,
0xee, 0xb2, 0xb2, 0x2a, 0xaf, 0xde, 0x64, 0x19,
0xa0, 0x58, 0xab, 0x4f, 0x6f, 0x74, 0x6b, 0xf4,
0x0f, 0xc0, 0xc3, 0xb7, 0x80, 0xf2, 0x44, 0x45,
0x2d, 0xa3, 0xeb, 0xf1, 0xc5, 0xd8, 0x2c, 0xde,
0xa2, 0x41, 0x89, 0x97, 0x20, 0x0e, 0xf8, 0x2e,
0x44, 0xae, 0x7e, 0x3f ),
AUTH ( 0xa4, 0x4a, 0x82, 0x66, 0xee, 0x1c, 0x8e, 0xb0, 0xc8,
0xb5, 0xd4, 0xcf, 0x5a, 0xe9, 0xf1, 0x9a ) );
/**
* Perform Galois/Counter Mode self-test
*
*/
static void gcm_test_exec ( void ) {
struct cipher_algorithm *gcm = &aes_gcm_algorithm;
unsigned int keylen;
/* Correctness tests */
cipher_ok ( &gcm_test_1 );
cipher_ok ( &gcm_test_2 );
cipher_ok ( &gcm_test_3 );
cipher_ok ( &gcm_test_4 );
cipher_ok ( &gcm_test_5 );
cipher_ok ( &gcm_test_6 );
cipher_ok ( &gcm_test_7 );
cipher_ok ( &gcm_test_8 );
cipher_ok ( &gcm_test_9 );
cipher_ok ( &gcm_test_10 );
cipher_ok ( &gcm_test_11 );
cipher_ok ( &gcm_test_12 );
cipher_ok ( &gcm_test_13 );
cipher_ok ( &gcm_test_14 );
cipher_ok ( &gcm_test_15 );
cipher_ok ( &gcm_test_16 );
cipher_ok ( &gcm_test_17 );
cipher_ok ( &gcm_test_18 );
/* Speed tests */
for ( keylen = 128 ; keylen <= 256 ; keylen += 64 ) {
DBG ( "AES-%d-GCM encryption required %ld cycles per byte\n",
keylen, cipher_cost_encrypt ( gcm, ( keylen / 8 ) ) );
DBG ( "AES-%d-GCM decryption required %ld cycles per byte\n",
keylen, cipher_cost_decrypt ( gcm, ( keylen / 8 ) ) );
}
}
/** Galois/Counter Mode self-test */
struct self_test gcm_test __self_test = {
.name = "gcm",
.exec = gcm_test_exec,
};

View File

@ -79,3 +79,4 @@ REQUIRE_OBJECT ( utf8_test );
REQUIRE_OBJECT ( acpi_test );
REQUIRE_OBJECT ( hmac_test );
REQUIRE_OBJECT ( dhe_test );
REQUIRE_OBJECT ( gcm_test );