mirror of https://github.com/ipxe/ipxe.git
[crypto] Separate out bigint_reduce() from bigint_mod_multiply()
Faster modular multiplication algorithms such as Montgomery multiplication will still require the ability to perform a single direct modular reduction. Neaten up the implementation of direct reduction and split it out into a separate bigint_reduce() function, complete with its own unit tests. Signed-off-by: Michael Brown <mcb30@ipxe.org>pull/875/merge
parent
f78c5a763c
commit
2bf16c6ffc
|
@ -34,22 +34,14 @@ FILE_LICENCE ( GPL2_OR_LATER_OR_UBDL );
|
|||
* Big integer support
|
||||
*/
|
||||
|
||||
/** Modular direct reduction profiler */
|
||||
static struct profiler bigint_mod_profiler __profiler =
|
||||
{ .name = "bigint_mod" };
|
||||
|
||||
/** Modular multiplication overall profiler */
|
||||
static struct profiler bigint_mod_multiply_profiler __profiler =
|
||||
{ .name = "bigint_mod_multiply" };
|
||||
|
||||
/** Modular multiplication multiply step profiler */
|
||||
static struct profiler bigint_mod_multiply_multiply_profiler __profiler =
|
||||
{ .name = "bigint_mod_multiply.multiply" };
|
||||
|
||||
/** Modular multiplication rescale step profiler */
|
||||
static struct profiler bigint_mod_multiply_rescale_profiler __profiler =
|
||||
{ .name = "bigint_mod_multiply.rescale" };
|
||||
|
||||
/** Modular multiplication subtract step profiler */
|
||||
static struct profiler bigint_mod_multiply_subtract_profiler __profiler =
|
||||
{ .name = "bigint_mod_multiply.subtract" };
|
||||
|
||||
/**
|
||||
* Conditionally swap big integers (in constant time)
|
||||
*
|
||||
|
@ -144,6 +136,175 @@ void bigint_multiply_raw ( const bigint_element_t *multiplicand0,
|
|||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Reduce big integer
|
||||
*
|
||||
* @v minuend0 Element 0 of big integer to be reduced
|
||||
* @v minuend_size Number of elements in minuend
|
||||
* @v modulus0 Element 0 of big integer modulus
|
||||
* @v modulus_size Number of elements in modulus and result
|
||||
* @v result0 Element 0 of big integer to hold result
|
||||
* @v tmp Temporary working space
|
||||
*/
|
||||
void bigint_reduce_raw ( const bigint_element_t *minuend0,
|
||||
unsigned int minuend_size,
|
||||
const bigint_element_t *modulus0,
|
||||
unsigned int modulus_size,
|
||||
bigint_element_t *result0, void *tmp ) {
|
||||
const bigint_t ( minuend_size ) __attribute__ (( may_alias ))
|
||||
*minuend = ( ( const void * ) minuend0 );
|
||||
const bigint_t ( modulus_size ) __attribute__ (( may_alias ))
|
||||
*modulus = ( ( const void * ) modulus0 );
|
||||
bigint_t ( modulus_size ) __attribute__ (( may_alias ))
|
||||
*result = ( ( void * ) result0 );
|
||||
struct {
|
||||
bigint_t ( minuend_size ) minuend;
|
||||
bigint_t ( minuend_size ) modulus;
|
||||
} *temp = tmp;
|
||||
const unsigned int width = ( 8 * sizeof ( bigint_element_t ) );
|
||||
const bigint_element_t msb_mask = ( 1UL << ( width - 1 ) );
|
||||
bigint_element_t *element;
|
||||
unsigned int minuend_max;
|
||||
unsigned int modulus_max;
|
||||
unsigned int subshift;
|
||||
bigint_element_t msb;
|
||||
int offset;
|
||||
int shift;
|
||||
int i;
|
||||
|
||||
/* Start profiling */
|
||||
profile_start ( &bigint_mod_profiler );
|
||||
|
||||
/* Sanity check */
|
||||
assert ( minuend_size >= modulus_size );
|
||||
assert ( sizeof ( *temp ) == bigint_reduce_tmp_len ( minuend ) );
|
||||
|
||||
/* Copy minuend and modulus to temporary working space */
|
||||
bigint_shrink ( minuend, &temp->minuend );
|
||||
bigint_grow ( modulus, &temp->modulus );
|
||||
|
||||
/* Normalise the modulus
|
||||
*
|
||||
* Scale the modulus by shifting left such that both modulus
|
||||
* "m" and minuend "x" have the same most significant set bit.
|
||||
* (If this is not possible, then the minuend is already less
|
||||
* than the modulus, and we may therefore skip reduction
|
||||
* completely.)
|
||||
*/
|
||||
minuend_max = bigint_max_set_bit ( minuend );
|
||||
modulus_max = bigint_max_set_bit ( modulus );
|
||||
shift = ( minuend_max - modulus_max );
|
||||
if ( shift < 0 )
|
||||
goto skip;
|
||||
subshift = ( shift & ( width - 1 ) );
|
||||
offset = ( shift / width );
|
||||
element = temp->modulus.element;
|
||||
for ( i = ( ( minuend_max - 1 ) / width ) ; ; i-- ) {
|
||||
element[i] = ( element[ i - offset ] << subshift );
|
||||
if ( i <= offset )
|
||||
break;
|
||||
if ( subshift ) {
|
||||
element[i] |= ( element[ i - offset - 1 ]
|
||||
>> ( width - subshift ) );
|
||||
}
|
||||
}
|
||||
for ( i-- ; i >= 0 ; i-- )
|
||||
element[i] = 0;
|
||||
|
||||
/* Reduce the minuend "x" by iteratively adding or subtracting
|
||||
* the scaled modulus "m".
|
||||
*
|
||||
* On each loop iteration, we maintain the invariant:
|
||||
*
|
||||
* -2m <= x < 2m
|
||||
*
|
||||
* If x is positive, we obtain the new minuend x' by
|
||||
* subtracting m, otherwise we add m:
|
||||
*
|
||||
* 0 <= x < 2m => x' := x - m => -m <= x' < m
|
||||
* -2m <= x < 0 => x' := x + m => -m <= x' < m
|
||||
*
|
||||
* and then halve the modulus (by shifting right):
|
||||
*
|
||||
* m' = m/2
|
||||
*
|
||||
* We therefore end up with:
|
||||
*
|
||||
* -m <= x' < m => -2m' <= x' < 2m'
|
||||
*
|
||||
* i.e. we have preseved the invariant while reducing the
|
||||
* bounds on x' by one power of two.
|
||||
*
|
||||
* The issue remains of how to determine on each iteration
|
||||
* whether or not x is currently positive, given that both
|
||||
* input values are unsigned big integers that may use all
|
||||
* available bits (including the MSB).
|
||||
*
|
||||
* On the first loop iteration, we may simply assume that x is
|
||||
* positive, since it is unmodified from the input value and
|
||||
* so is positive by definition (even if the MSB is set). We
|
||||
* therefore unconditionally perform a subtraction on the
|
||||
* first loop iteration.
|
||||
*
|
||||
* Let k be the MSB after normalisation. We then have:
|
||||
*
|
||||
* 2^k <= m < 2^(k+1)
|
||||
* 2^k <= x < 2^(k+1)
|
||||
*
|
||||
* On the first loop iteration, we therefore have:
|
||||
*
|
||||
* x' = (x - m)
|
||||
* < 2^(k+1) - 2^k
|
||||
* < 2^k
|
||||
*
|
||||
* Any positive value of x' therefore has its MSB set to zero,
|
||||
* and so we may validly treat the MSB of x' as a sign bit at
|
||||
* the end of the first loop iteration.
|
||||
*
|
||||
* On all subsequent loop iterations, the starting value m is
|
||||
* guaranteed to have its MSB set to zero (since it has
|
||||
* already been shifted right at least once). Since we know
|
||||
* from above that we preserve the loop invariant:
|
||||
*
|
||||
* -m <= x' < m
|
||||
*
|
||||
* we immediately know that any positive value of x' also has
|
||||
* its MSB set to zero, and so we may validly treat the MSB of
|
||||
* x' as a sign bit at the end of all subsequent loop
|
||||
* iterations.
|
||||
*
|
||||
* After the last loop iteration (when m' has been shifted
|
||||
* back down to the original value of the modulus), we may
|
||||
* need to add a single multiple of m' to ensure that x' is
|
||||
* positive, i.e. lies within the range 0 <= x' < m'. To
|
||||
* allow for reusing the (inlined) expansion of
|
||||
* bigint_subtract(), we achieve this via a potential
|
||||
* additional loop iteration that performs the addition and is
|
||||
* then guaranteed to terminate (since the result will be
|
||||
* positive).
|
||||
*/
|
||||
for ( msb = 0 ; ( msb || ( shift >= 0 ) ) ; shift-- ) {
|
||||
if ( msb ) {
|
||||
bigint_add ( &temp->modulus, &temp->minuend );
|
||||
} else {
|
||||
bigint_subtract ( &temp->modulus, &temp->minuend );
|
||||
}
|
||||
msb = ( temp->minuend.element[ minuend_size - 1 ] & msb_mask );
|
||||
if ( shift > 0 )
|
||||
bigint_shr ( &temp->modulus );
|
||||
}
|
||||
|
||||
skip:
|
||||
/* Sanity check */
|
||||
assert ( ! bigint_is_geq ( &temp->minuend, &temp->modulus ) );
|
||||
|
||||
/* Copy result */
|
||||
bigint_shrink ( &temp->minuend, result );
|
||||
|
||||
/* Stop profiling */
|
||||
profile_stop ( &bigint_mod_profiler );
|
||||
}
|
||||
|
||||
/**
|
||||
* Perform modular multiplication of big integers
|
||||
*
|
||||
|
@ -171,8 +332,6 @@ void bigint_mod_multiply_raw ( const bigint_element_t *multiplicand0,
|
|||
bigint_t ( size * 2 ) result;
|
||||
bigint_t ( size * 2 ) modulus;
|
||||
} *temp = tmp;
|
||||
int shift;
|
||||
int i;
|
||||
|
||||
/* Start profiling */
|
||||
profile_start ( &bigint_mod_multiply_profiler );
|
||||
|
@ -181,33 +340,13 @@ void bigint_mod_multiply_raw ( const bigint_element_t *multiplicand0,
|
|||
assert ( sizeof ( *temp ) == bigint_mod_multiply_tmp_len ( modulus ) );
|
||||
|
||||
/* Perform multiplication */
|
||||
profile_start ( &bigint_mod_multiply_multiply_profiler );
|
||||
bigint_multiply ( multiplicand, multiplier, &temp->result );
|
||||
profile_stop ( &bigint_mod_multiply_multiply_profiler );
|
||||
|
||||
/* Rescale modulus to match result */
|
||||
profile_start ( &bigint_mod_multiply_rescale_profiler );
|
||||
bigint_grow ( modulus, &temp->modulus );
|
||||
shift = ( bigint_max_set_bit ( &temp->result ) -
|
||||
bigint_max_set_bit ( &temp->modulus ) );
|
||||
for ( i = 0 ; i < shift ; i++ )
|
||||
bigint_shl ( &temp->modulus );
|
||||
profile_stop ( &bigint_mod_multiply_rescale_profiler );
|
||||
|
||||
/* Subtract multiples of modulus */
|
||||
profile_start ( &bigint_mod_multiply_subtract_profiler );
|
||||
for ( i = 0 ; i <= shift ; i++ ) {
|
||||
if ( bigint_is_geq ( &temp->result, &temp->modulus ) )
|
||||
bigint_subtract ( &temp->modulus, &temp->result );
|
||||
bigint_shr ( &temp->modulus );
|
||||
}
|
||||
profile_stop ( &bigint_mod_multiply_subtract_profiler );
|
||||
|
||||
/* Resize result */
|
||||
bigint_shrink ( &temp->result, result );
|
||||
/* Reduce result */
|
||||
bigint_reduce ( &temp->result, modulus, result, temp );
|
||||
|
||||
/* Sanity check */
|
||||
assert ( bigint_is_geq ( modulus, result ) );
|
||||
assert ( ! bigint_is_geq ( result, modulus ) );
|
||||
|
||||
/* Stop profiling */
|
||||
profile_stop ( &bigint_mod_multiply_profiler );
|
||||
|
|
|
@ -217,6 +217,35 @@ FILE_LICENCE ( GPL2_OR_LATER_OR_UBDL );
|
|||
multiplier_size, (result)->element ); \
|
||||
} while ( 0 )
|
||||
|
||||
/**
|
||||
* Reduce big integer
|
||||
*
|
||||
* @v minuend Big integer to be reduced
|
||||
* @v modulus Big integer modulus
|
||||
* @v result Big integer to hold result
|
||||
* @v tmp Temporary working space
|
||||
*/
|
||||
#define bigint_reduce( minuend, modulus, result, tmp ) do { \
|
||||
unsigned int minuend_size = bigint_size (minuend); \
|
||||
unsigned int modulus_size = bigint_size (modulus); \
|
||||
bigint_reduce_raw ( (minuend)->element, minuend_size, \
|
||||
(modulus)->element, modulus_size, \
|
||||
(result)->element, tmp ); \
|
||||
} while ( 0 )
|
||||
|
||||
/**
|
||||
* Calculate temporary working space required for reduction
|
||||
*
|
||||
* @v minuend Big integer to be reduced
|
||||
* @ret len Length of temporary working space
|
||||
*/
|
||||
#define bigint_reduce_tmp_len( minuend ) ( { \
|
||||
unsigned int size = bigint_size (minuend); \
|
||||
sizeof ( struct { \
|
||||
bigint_t ( size ) temp_minuend; \
|
||||
bigint_t ( size ) temp_modulus; \
|
||||
} ); } )
|
||||
|
||||
/**
|
||||
* Perform modular multiplication of big integers
|
||||
*
|
||||
|
@ -339,6 +368,11 @@ void bigint_multiply_raw ( const bigint_element_t *multiplicand0,
|
|||
const bigint_element_t *multiplier0,
|
||||
unsigned int multiplier_size,
|
||||
bigint_element_t *result0 );
|
||||
void bigint_reduce_raw ( const bigint_element_t *minuend0,
|
||||
unsigned int minuend_size,
|
||||
const bigint_element_t *modulus0,
|
||||
unsigned int modulus_size,
|
||||
bigint_element_t *result0, void *tmp );
|
||||
void bigint_mod_multiply_raw ( const bigint_element_t *multiplicand0,
|
||||
const bigint_element_t *multiplier0,
|
||||
const bigint_element_t *modulus0,
|
||||
|
|
|
@ -185,6 +185,21 @@ void bigint_multiply_sample ( const bigint_element_t *multiplicand0,
|
|||
bigint_multiply ( multiplicand, multiplier, result );
|
||||
}
|
||||
|
||||
void bigint_reduce_sample ( const bigint_element_t *minuend0,
|
||||
unsigned int minuend_size,
|
||||
const bigint_element_t *modulus0,
|
||||
unsigned int modulus_size,
|
||||
bigint_element_t *result0, void *tmp ) {
|
||||
const bigint_t ( minuend_size ) __attribute__ (( may_alias ))
|
||||
*minuend = ( ( const void * ) minuend0 );
|
||||
const bigint_t ( modulus_size ) __attribute__ (( may_alias ))
|
||||
*modulus = ( ( const void * ) modulus0 );
|
||||
bigint_t ( modulus_size ) __attribute__ (( may_alias ))
|
||||
*result = ( ( void * ) result0 );
|
||||
|
||||
bigint_reduce ( minuend, modulus, result, tmp );
|
||||
}
|
||||
|
||||
void bigint_mod_multiply_sample ( const bigint_element_t *multiplicand0,
|
||||
const bigint_element_t *multiplier0,
|
||||
const bigint_element_t *modulus0,
|
||||
|
@ -516,6 +531,48 @@ void bigint_mod_exp_sample ( const bigint_element_t *base0,
|
|||
sizeof ( result_raw ) ) == 0 ); \
|
||||
} while ( 0 )
|
||||
|
||||
/**
|
||||
* Report result of big integer modular direct reduction test
|
||||
*
|
||||
* @v minuend Big integer to be reduced
|
||||
* @v modulus Big integer modulus
|
||||
* @v expected Big integer expected result
|
||||
*/
|
||||
#define bigint_reduce_ok( minuend, modulus, expected ) do { \
|
||||
static const uint8_t minuend_raw[] = minuend; \
|
||||
static const uint8_t modulus_raw[] = modulus; \
|
||||
static const uint8_t expected_raw[] = expected; \
|
||||
uint8_t result_raw[ sizeof ( expected_raw ) ]; \
|
||||
unsigned int minuend_size = \
|
||||
bigint_required_size ( sizeof ( minuend_raw ) ); \
|
||||
unsigned int modulus_size = \
|
||||
bigint_required_size ( sizeof ( modulus_raw ) ); \
|
||||
bigint_t ( minuend_size ) minuend_temp; \
|
||||
bigint_t ( modulus_size ) modulus_temp; \
|
||||
bigint_t ( modulus_size ) result_temp; \
|
||||
size_t tmp_len = bigint_reduce_tmp_len ( &minuend_temp ); \
|
||||
uint8_t tmp[tmp_len]; \
|
||||
{} /* Fix emacs alignment */ \
|
||||
\
|
||||
assert ( bigint_size ( &result_temp ) == \
|
||||
bigint_size ( &modulus_temp ) ); \
|
||||
bigint_init ( &minuend_temp, minuend_raw, \
|
||||
sizeof ( minuend_raw ) ); \
|
||||
bigint_init ( &modulus_temp, modulus_raw, \
|
||||
sizeof ( modulus_raw ) ); \
|
||||
DBG ( "Modular reduce:\n" ); \
|
||||
DBG_HDA ( 0, &minuend_temp, sizeof ( minuend_temp ) ); \
|
||||
DBG_HDA ( 0, &modulus_temp, sizeof ( modulus_temp ) ); \
|
||||
bigint_reduce ( &minuend_temp, &modulus_temp, &result_temp, \
|
||||
tmp ); \
|
||||
DBG_HDA ( 0, &result_temp, sizeof ( result_temp ) ); \
|
||||
bigint_done ( &result_temp, result_raw, \
|
||||
sizeof ( result_raw ) ); \
|
||||
\
|
||||
ok ( memcmp ( result_raw, expected_raw, \
|
||||
sizeof ( result_raw ) ) == 0 ); \
|
||||
} while ( 0 )
|
||||
|
||||
/**
|
||||
* Report result of big integer modular multiplication test
|
||||
*
|
||||
|
@ -1674,6 +1731,35 @@ static void bigint_test_exec ( void ) {
|
|||
0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
|
||||
0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
|
||||
0x00, 0x00, 0x00, 0x01 ) );
|
||||
bigint_reduce_ok ( BIGINT ( 0x00 ),
|
||||
BIGINT ( 0xaf ),
|
||||
BIGINT ( 0x00 ) );
|
||||
bigint_reduce_ok ( BIGINT ( 0xab ),
|
||||
BIGINT ( 0xab ),
|
||||
BIGINT ( 0x00 ) );
|
||||
bigint_reduce_ok ( BIGINT ( 0x1d, 0x97, 0x63, 0xc9, 0x97, 0xcd, 0x43,
|
||||
0xcb, 0x8e, 0x71, 0xac, 0x41, 0xdd ),
|
||||
BIGINT ( 0xcc, 0x9d, 0xa0, 0x79, 0x96, 0x6a, 0x46,
|
||||
0xd5, 0xb4, 0x30, 0xd2, 0x2b, 0xbf ),
|
||||
BIGINT ( 0x1d, 0x97, 0x63, 0xc9, 0x97, 0xcd, 0x43,
|
||||
0xcb, 0x8e, 0x71, 0xac, 0x41, 0xdd ) );
|
||||
bigint_reduce_ok ( BIGINT ( 0x21, 0xfa, 0x4f, 0xce, 0x0f, 0x0f, 0x4d,
|
||||
0x43, 0xaa, 0xad, 0x21, 0x30, 0xe5 ),
|
||||
BIGINT ( 0x21, 0xfa, 0x4f, 0xce, 0x0f, 0x0f, 0x4d,
|
||||
0x43, 0xaa, 0xad, 0x21, 0x30, 0xe5 ),
|
||||
BIGINT ( 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
|
||||
0x00, 0x00, 0x00, 0x00, 0x00, 0x00 ) );
|
||||
bigint_reduce_ok ( BIGINT ( 0xf9, 0x78, 0x96, 0x39, 0xee, 0x98, 0x42,
|
||||
0x6a, 0xb8, 0x74, 0x0b, 0xe8, 0x5c, 0x76,
|
||||
0x34, 0xaf ),
|
||||
BIGINT ( 0xf3, 0x65, 0x35, 0x41, 0x66, 0x65 ),
|
||||
BIGINT ( 0xb3, 0x07, 0xe8, 0xb7, 0x01, 0xf6 ) );
|
||||
bigint_reduce_ok ( BIGINT ( 0xfe, 0x30, 0xe1, 0xc6, 0x65, 0x97, 0x48,
|
||||
0x2e, 0x94, 0xd4 ),
|
||||
BIGINT ( 0x47, 0xaa, 0x88, 0x00, 0xd0, 0x30, 0x62,
|
||||
0xfb, 0x5d, 0x55 ),
|
||||
BIGINT ( 0x27, 0x31, 0x49, 0xc3, 0xf5, 0x06, 0x1f,
|
||||
0x3c, 0x7c, 0xd5 ) );
|
||||
bigint_mod_multiply_ok ( BIGINT ( 0x37 ),
|
||||
BIGINT ( 0x67 ),
|
||||
BIGINT ( 0x3f ),
|
||||
|
|
Loading…
Reference in New Issue